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The product categories are vital for the E-commerce platforms due to the core applications on auto- 

matic product category assignment, personalized product recommendations, etc. In this paper, we con- 

struct a large-scale M ulti-modal E -commerce P roducts classification dataset MEP-3M, which is large- 

scale, hierarchical-categorized, multi-modal, fine-grained, and long-tailed. Statistically, MEP-3M consists 

of over 3 million products, thus achieves the largest data scale in comparison to the existing E-commerce 

product datasets. The products in MEP-3M are represented in three modalities: image, textual descrip- 

tion, and OCR text, and labeled with tree-like labels. The third level labels are extremely fine-grained. In 

addition, we exploit four novel practical tasks on this dataset, Product classification, Hierarchical Product 

Classification, Fine-grained Product Classification, and Product Representation Learning. For each task, we 

present some image-only, text-only, and multi-modal baseline performances for further researches. The 

MEP-3M dataset will be released at https://github.com/ChenDelong1999/MEP-3M . 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

The recent rise of deep learning can be traced back to the cre- 

tion of ImageNet dataset [14] and the revival of deep Convolu- 

ional Neural Network (CNN) [6,28,32,33,64] . Since then, the com- 

ination of increasingly complex neural network architectures and 

ncreasingly large datasets fundamentally revolutionized Computer 

ision (CV) and Natural Language Processing (NLP) fields. In recent 

ears, the research communities are gradually moving from these 

ingle-modal tasks to multi-modal tasks [5,11] . Large-scale multi- 

odal datasets, especially vision-language datasets ( e.g. Flickr30K 

60] , Multi30K [16] , MS-COCO [3] , SBU Captions [37] , WIT [45] ),

ave been constructed and presented. These datasets enable re- 

earchers to develop multi-modal models, which learn to utilize 

he complementary information across different modalities and 

ring the opportunity to combine the advancements across differ- 

nt fields to further improve the model performance. 

Another recent hot topic in deep learning field is fine-grained 

earning, which aims to discover the subtle differences between 

ifferent sub-categories, such as birds [22] , dogs [46] , cars [58] , 

nd castles [2] . A lot of fine-grained datasets are created to pro- 
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ote the development of this domain, such as iNaturalist [20] , 

roducts-10k [7] , and iMaterialist Fashion [17] . Notably, lots of E- 

ommerce-related datasets have been proposed. A possible reason 

s the construction of this type of dataset can rely on the pre- 

efined hierarchical categorization information ( e.g. , Stock Keeping 

nit, SKU). 

However, recent E-commerce datasets only focus on one aspect 

rom multi-modal or fine-grained without integrating them to- 

ether. Moreover, many E-commerce product datasets remain non- 

ublic [10,13,19,31,48,62] . In this paper, we construct a large M ulti- 

odal E -commerce P roducts classification dataset named MEP-3M, 

hich provides multi-modal and fine-grained data. It is collected 

rom several Chinese large E-commerce platforms and consists of 

ver 3 million image-text pairs of products and 599 classes. Since 

ifferent E-commerce platforms have different product class la- 

eling schemes, we design a text similarity-based label alignment 

cheme to automatically merge the multi-source data. For each 

roduct, the corresponding image and the product title text are 

ollected. Moreover, since a large amount of E-commerce product 

ontains text information in image, we also extract OCR text and 

rovide it as another modality. As demonstrated in Fig. 1 , MEP-3M 

onsists of the second largest number of products, even compared 

ith the single-modal E-commerce product datasets. 

Here we briefly summarize the key characteristics of our MEP- 

M: Large-scale : MEP-3M dataset consists of over 3 million prod- 

ct samples in total. Each sample consists of an image-text pair, 

esulting in 3,012,959 images and 156,069,329 characters. The en- 

https://doi.org/10.1016/j.patcog.2023.109519
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Fig. 1. The comparison between our presented dataset and existing public E-commerce product dataset. 

Fig. 2. Images randomly selected from the MEP-3M dataset. Our dataset covers a wide range of E-commerce products. 
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ire dataset takes approximately 76GB of storage. Hierarchical- 

ategorized : Three levels of the label are given. There are 14 

lasses (first level), 599 sub-classes (second level), and 13 sub- 

lasses have further subsub-classes (third level). Multi-modal : 

ach product has both image and Chinese label and title. Some 

mage samples and the text cloud of the titles are given in Fig. 2

nd Fig. 3 . Fine-grained : Among a total of 599 sub-classes, many 

amples are visually similar but belong to different sub-classes. 

ong-tailed : MEP-3M is highly imbalanced. Some sub-classes in 

he dataset have more than 90k samples, while some classes have 

round 30 samples. 

We note that the preliminary version of MEP-3M dataset has 

een published in the IJCAI 2021 Workshop on Long-Tailed Dis- 

ribution Learning 2 . The dataset presented in this paper is an im- 

roved and extended version. In the following, we summarize the 

ain contribution of this paper: 

• We constructed a large-scale multi-modal E-commerce product 

dataset MEP-3M. The data are collected and merged from sev- 

eral E-commerce platform. MEP-3M has three modalities ( i.e. , 

image, text, OCR) and three levels of labels. We present base- 

line results of product classification on these three modalities 
and three levels. 

2 https://ltdl-ijcai21.github.io 

p

p

2 
• We investigated the potential of hierarchical classification on 

MEP-3M and present three baselines to utilize the information 

from both coarse and fine labels. We pointed out that weakly- 

supervised hierarchical classification and multi-modal hierar- 

chical classification are promising research direction on MEP- 

3M. 
• We presented MEP- meats , MEP- accessories , MEP- jewelries , and 

MEP- outdoors as four fine-grained subsets of MEP-3M. Their 

uniqueness includes novel meta classes, novel image domains, 

and multi-modal data. Baselines for these subsets are also pro- 

vided. 
• We presented another special subsets named MEP- for-RPC and 

demonstrate that pre-training on it can effectively improve the 

models for Automatic Checkout (ACO) task. 

The rest of this paper is organized as follows. We first review 

nd compare existing E-commerce product datasets in Section 2 . 

e describe the collection and construction process of MEP-3M 

n Section 3 . In Section 4, Section 5, Section 6 and Section 7 ,

e present four novel practical tasks on MEP-3M: Product clas- 

ification, Hierarchical Product Classification, Fine-grained Product 

lassification, and Product Representation Learning. For each sec- 

ion, we first introduce the task and corresponding data, then 

resent our baseline solutions and results. Section 8 concludes the 

aper. 

https://ltdl-ijcai21.github.io
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Fig. 3. The text cloud (after jieba word segmentation) of product title in the MEP-3M dataset. The text size corresponds to the appearance frequency. 
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. Related work 

Product classification is a critical issue for an E-commerce plat- 

orm since it can significantly improve the accuracy and reduce 

he workload of manual product category assignments. Since the 

roduct title usually aims at delivering the product information 

o users accurately and comprehensively as possible, text-based 

roduct classification has drawn more attention in the past years. 

n contrast, image data is generally harder to collect than text 

nformation, but its effectiveness is well demonstrated by a re- 

ent study [62] . Therefore, in this section, we review and compare 

ur presented MEP-3M dataset with several E-commerce product 

atasets, and mainly focus on image-based ones. 

In the past several years, different methods have been pro- 

osed to improve the performance of product classification, and 

any product datasets are collected and constructed, but unfortu- 

ately, they remained non-public [10,13,19,31,48,62] . On the other 

and, there is also some public product dataset that only focuses 

n a limited subset of products (such as iMaterialist Fashion [17] ), 

ut classification models on this type of dataset are not applica- 

le for general E-commerce platforms. Meanwhile, there are also 

ome retail groceries datasets such as RPC dataset [52] , but they 

iffer from E-commerce datasets fundamentally since they are cre- 

ted for training automatic checkout systems. In the following, we 

riefly review the existing public E-commerce product datasets 

hat aim at general products categories. 

• Stanford Online Products 3 [43] is a E-commerce product 

dataset collected by a group from Stanford University using the 

web crawling API of eBay.com. Duplicate and irrelevant images 

in the dataset are filtered out. Each product in this dataset has 

approximately 5.3 images. 
• iMat Challenge@FGVC6 4 is the dataset of iMaterialist Challenge 

on Product Recognition at FGVC6, CVPR 2019, provided by Ma- 

long Technologies and FGVC workshop. This dataset has a total 

number of 2,019 product categories, which are organized into a 

hierarchical structure with four levels. 
• SIGIR 2020 E-commerce 5 [1] refers to the dataset used by SI- 

GIR 2020 eCom Rakuten Data Challenge. It is a multi-modal 

dataset, where each sample consists of the image, the title, and 

the description of a product. Text information is in French. 
3 https://github.com/rksltnl/Deep- Metric- Learning- CVPR16 
4 https://www.kaggle.com/c/imaterialist- product- 2019/data 
5 https://sigir- ecom.github.io/ecom2020/data- task.html 

3 
• AliProducts 6 [12] is a large-scale fine-grained SKU-level E- 

commerce product dataset without human-labelling. It also 

contains side information, such as hierarchical relationships be- 

tween classes. 
• Products-10K 

7 [7] is a large-scale product recognition dataset 

covering 10k fine-grained SKU-level products from JD.com. It 

contains both in-shop photos and customer images. All samples 

are manually checked to reduce noise. 
• Product1M 

8 [63] is a multi-modal cosmetic dataset for real- 

world instance-level retrieval. It consists of both single-product 

and multi-product samples, and each sample of the dataset 

contains an image-caption pair. The samples in the Product1M 

dataset encompass a wide variety of cosmetics brands. Some 

appealing characteristics of this dataset including well mimic 

the real-world scenes, including fine-grained categories, com- 

plex combinations, and fuzzy correspondence. 
• M5Product 9 [15] is a large-scale multi-modal pre-training 

dataset with coarse and fine-grained annotation. It contains 6 

million multi-modal samples and 5,0 0 0 properties with 24 mil- 

lion values. It is also annotated with 6,0 0 0 classes and the 

dataset also presents five modalities of data, including image, 

text, table, video and audio. 

A detailed comparison of the MEP-3M dataset and the exist- 

ng public E-commerce datasets is shown in Table 1 . Importantly, 

mong the above datasets, only four datasets are multi-modal, 

hich are SIGIR 2020 E-commerce dataset, Product1M dataset, 

5Product dataset and MEP-3M dataset. Compared to SIGIR 2020 

-commerce dataset, our MEP-3M dataset has much more sam- 

les and more categories. Moreover, the text of the SIGIR 2020 

-commerce dataset is in French, while our dataset is in Chi- 

ese. Since China has been the world’s largest online retail mar- 

et, the MEP-3M dataset may have more potential application 

alue. Though the texts of the Product1M dataset and M5Product 

ataset are also in Chinese, the two datasets are quite differ- 

nt from our MEP-3M dataset. For example, the sample domain 

f the Product1M dataset is limited to cosmetics only, while the 

EP-3M dataset includes a total of 599 general categories. Ad- 

itionally, MEP-3M has more than three million samples, mak- 

ng it approximately three times larger than Product1M. Although 

he M5Product dataset is larger in scale, MEP-3M has several 
6 https://tianchi.aliyun.com/competition/entrance/231780 
7 https://www.kaggle.com/c/products-10k 
8 https://github.com/zhanxlin/Product1M 

9 https://xiaodongsuper.github.io/M5Product _ dataset/ 

https://github.com/rksltnl/Deep-Metric-Learning-CVPR16
https://www.kaggle.com/c/imaterialist-product-2019/data
https://sigir-ecom.github.io/ecom2020/data-task.html
https://tianchi.aliyun.com/competition/entrance/231780
https://www.kaggle.com/c/products-10k
https://github.com/zhanxlin/Product1M
https://xiaodongsuper.github.io/M5Product_dataset/
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Table 1 

Comparison with existing E-commerce datasets. 

Dataset Year #class #image Modality 

Stanford 2016 23K 0.120M image 

iMat FGVC6 2019 2K 1.012M image 

SIGIR 2020 2020 27 0.098M image, text (French) 

AliProducts 2020 50K 2.500M image 

Products-10K 2020 10K 0.150M image 

Product1M 2021 458 1.182M image, text (Chinese) 

M5Product 2022 6K 6.313M image, text (Chinese), table, video and audio 

MEP-3M 2021 599 3.012M image, text (Chinese), OCR 
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nique characteristics and advantages. For instance, the class la- 

els in MEP-3M are organized in a hierarchical tree structure, 

hile M5Product only has a single level of categories. Addition- 

lly, MEP-3M includes OCR as an additional modality, which is 

ot included in the M5Product dataset. Furthermore, a MEP- for-RPC 

ubset has been derived from MEP-3M to benefit downstream re- 

ail product checkout models, and we also demonstrated this po- 

ential. Finally, rather than being sourced from a single platform 

ike M5Product, MEP-3M contains samples collected from multiple 

-commerce platforms, which increases the diversity of MEP-3M 

amples. Moreover, the label of the E-commerce platform can be 

sed as an auxiliary source of supervision signal. For example, it is 

ossible to use the platform labels to learn domain-adapted prod- 

ct representation. 

. MEP-3M dataset 

.1. Data collection 

The collected images are stored in . jpg or . png file format. We 

nd that a large proportion of images contain texts. Therefore, be- 

ides image and text, we also extract the OCR text as another com- 

lementary modality. A text detection model from [4] and a text 

ecognition model from [41] for OCR extraction. We extract both 

implified Chinese characters and English characters. The extracted 

exts are concatenated into a single line of text. From the extracted 

CR texts, We find that some of them provide information that de- 

cribe features of the product or have strong relationship with the 

roduct category, as shown in the top of Fig. 4 . But as the bottom

f Fig. 4 , some other OCR text are irrelevant to the product, such 

s promotional information. 

In the following, we give an example of an item in MEP-3M 

ataset annotation file. 
4 
The class_id denotes the first level of class label, ranging 

rom 1 to 14. The sub_class_id is the second level of class la- 

el, ranging from 1 to 599. The subsub_class_id corresponds 

o the third level index, which ranges from 600 to 688. Construc- 

ion of these three level of labels will be described in Section 3.2 .

he rest fields img_path , img_resolution , title , and OCR 

rovide the information of product image, title text, and OCR text. 

or the image without OCR, the OCR field is set to 'FLASE'. 

.2. Multi-source label alignment 

This section introduce our proposed method of aligning multi- 

ource labels. The label alignment is based on the analysis of the 

ollected first-level labels (denote as ‘class’) and second-level la- 

els (‘sub-class’). To take the different granularity across different 

-commerce platforms into account, we also create third-level la- 

els (‘subsub-class’) for some of the sub-classes. 

For first level, due to the number of classes are relatively small 

all the platforms have less than 20 first level classes), we man- 

ally align them across different platforms. Classes with similar 

eanings are merged to a single class, whose new class_name is 

esignated to cover the meaning of both sides. Meanwhile, unique 

lasses are preserved as separated classes. Finally, there are a to- 

al of 14 different first level classes. A number is assigned to each 

lass as its class_id . The class_id and the corresponding 

lass_name of all the 14 first level classes are shown in Table. 2 .

The number of sub-classes is far more than the first level, mak- 

ng manual alignment impossible. Therefore, we design an au- 

omated alignment approach based on quantitative text analysis. 

pecifically, the goal of the alignment is to figure out the sub-class 

airs that are semantically similar across different E-commerce 

latforms. We assume these sub-class pairs have the following 



F. Liu, D. Chen, X. Du et al. Pattern Recognition 140 (2023) 109519 

Fig. 4. Examples of OCR information in MEP-3M dataset. Top : informative OCR texts. Bottom : less informative OCR texts. 

Table 2 

The Numbers of samples and sub-classes of the 14 classes. 

class_id class_name (CN) class_name (EN) #sample #sub_class 

1 � � / �� � / � � Mobile phones/Digital devices 122,312 21 

2 ��� � Home appliance 240,779 51 

3 � ��� Computers/office 85,699 17 

4 �� / �� / ��/ ��/ �� Home/decoration/kitchen 534,460 123 

5 ��/ � � / ��/ � � Foods/drinks 411,046 53 

6 ��/ � ���/ �� Health care/makeup 139,049 30 

7 �� / �� / �� Baby care/ toys/clothes 337,425 73 

8 ��/ � � Sports/outdoors 346,451 54 

9 � �/ � �/ �� / �� Clothes/shoes 536,842 110 

10 ��/ �� / �� Luggage/jewelries 86,648 13 

11 � � / � ���/ �� �� Art/flowers/plants 46,316 14 

12 � � / � � / � � � � Cars service 66,963 21 

13 �� Books 23,208 5 

14 � � �� / ���� Pharmaceuticals 35,761 14 
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10 https://docs.python.org/3/library/difflib.html 
11 https://pypi.org/project/simtext 
hree characteristics: 1) they belong to the same first level class, 

) their names share a certain degree of similarity, 3) their title 

ontents have similar features on term frequency. For the second 

nd the third characteristics, we respectively calculate label simi- 

arity S label and content similarity S content as metrics. 

The label similarity S label measures how far the two sub-class 

ames coincide with each other, it is defined as: 

 label = 2 . 0 × M/T (1) 

 where T indicates the total number of characters in both sub- 

lass names, and M indicates the number of matches. Note that 

his is 1.0 if the sub-class names are identical, and 0.0 if they have

othing in common. 

The content similarity S content is the cosine distance between 

erm-frequency features extract from the title text content of two 

ifferent sub-classes, it is defined as: 

 content = 

x 1 · x 2 
‖ x 1 ‖ × ‖ x 2 ‖ 

(2) 
5

 where x 1 and x 2 are the term-frequency feature vector of title 

ext content. Each element in x 1 and x 2 counts the number of oc- 

urrences of a certain term. 

The S label are calculated by using python difflib package 10 , while 

he S content is based on python simtext package 11 . In order to im- 

rove computational efficiency of S content , we use the first 220 0 0 

haracters of a sub-class product titles, corresponding to approx- 

mately 450 products. We iterate over all the sub-class pairs that 

elongs to the same classes, and filter them according to the fol- 

owing criterion: 

 label ≥ 0 . 50 AND S content > 0 . 75 (3) 

The hyper-parameter of 0.50 is chosen by empirical hyper- 

arameter tuning. As for S content , we first retrieve all sub-class 

airs that have a S label = 1 . 00 (i.e., with identical class names), and

alculate the S content between these sub-class pairs. The averaged 

 content is 0.75, and we use this value as the threshold of S content . 

https://docs.python.org/3/library/difflib.html
https://pypi.org/project/simtext
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Table 3 

Examples of second-level label alignment. 

sub-class name sub-class name S label S content new class name (CN) new class name (EN) 

� ��� � ��� 1.00 0.929 � ��� Children’s tableware 

� �� � � �� � 1.00 0.898 � �� � Milk powder during pregnancy 

� � � � 1.00 0.870 � � Air conditioner 

���� ���� 1.00 0.768 ���� Cycling equipments 

��� � ��� � 1.00 0.705 ��� � Bath supplies 

� � � � � � � � � 0.89 0.960 � � � � � Infant milk powder 

� � �� �� 0.67 0.907 �� Wipes 

�� / � � �� 0.57 0.854 �� / � � Coffee/milk tea 

� � � �� � 0.67 0.849 � �� � Beverages 

�� �� �� �� 0.75 0.756 �� �� Office stationery 

Fig. 5. The distribution of sub-classes, image resolution, and title length in MEP-3M dataset. 
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ew names are manually assigned for those sub-class pairs that 

 label � = 1 . 00 . Some examples of the results are listed in Table. 3 . 

Some platforms have further finer-grained categories. Therefore, 

eyond the class and the sub-class labels, we create finer-grained 

ubsub-class labels for a total of 13 sub-classes: 

or the sub-class that does not have finer-grained subsub-classes, 

he subsub_class_id and subsub_class_name are set to 

FLASE'. 

.3. Dataset statistics 

Most images are in a 220 ×220 resolution, and the others are 

n 64 ×50, 75 ×75, 60 ×60, 54 ×54, 10 0 ×75, 80 0 ×80 0 and 219 ×220

esolution. A total of 2,908,596 (96.53%) of the images are in . jpg 

ormat, while the other 104,363 (3.46%) images are in . png format. 

The text of title is in simplified Chinese. The length of 

itle ranges from 2 characters to more than 100 characters. 

he average length of it is 49. In total, the dataset consists of 

56,069,329 characters in title overall. OCR text is detected in a 

otal of 1,404,146 images (46.6% of all products). Fig. 6 shows the 

tatistics of character frequency in title and OCR text. 
6 
Each level of labels are provided in both Chinese and English. 

he entire dataset takes around 76 GB storage. See Fig 5 for the 

istribution of sub-classes, image resolution, and title length in 

EP-3M dataset. 

. Product classification 

.1. Data and task 

Product classification is the most straightforward task on MEP- 

M dataset. The product classification task can be done on all three 

evels of label in MEP-3M. We defined the second level (599-way) 

s the predominant setting. Since MEP-3M provides multi-modal 

ata, the model can also be trained with different modalities of 

ata or their combination. Specifically, we defined image-only set- 

ing, text-only setting, and multi-modal setting, where the model 

an respectively access image data only, text data only, or both of 

hem. The three levels of labels and three settings of data modal- 

ty result in nine classification tasks. In the following, we first con- 

uct comparative experiments on the predominant task (the sec- 
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Fig. 6. Character frequency analysis of text from title and OCR. Comparatively, text in the title is more informative, while text OCR contains more promotional-related 

information. 

Table 4 

The classification accuracies of different baseline methods on MEP-3M. 

Model Data Top-1 Top-5 AP F1-score 

VGG-19 image-only 76.36% 91.77% 0.3966 0.7275 

Inception-v3 image-only 79.48% 94.27% 0.6326 0.7493 

LSTM text-only 89.13% 98.33% 0.9200 0.8796 

Bi-LSTM text-only 90.68% 98.70% 0.9309 0.8931 

VGG + BiLSTM multi-modal 91.07 % 98.84 % 0.9354 0.8540 

TFN multi-modal 90.70% 98.74% 0.9289 0.8899 

LMF multi-modal 89.22% 98.19% 0.8924 0.9125 
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Table 5 

The classification accuracies of different level of class la- 

bels on MEP-3M. 

Model First-level Second-level Third-level 

ResNet 88.81% 71.37% 71.15% 

BERT 98.76% 94.29% 94.10% 
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I

nd level) to demonstrate the effectiveness of multi-modal data, 

hen compare the difficulty of the three levels. 

.2. Baseline results 

For the classification on the second level, we test both single 

odal models ( i.e. , LSTM for text-only, VGG-19 [42] and Inception- 

3 [47] for image only) and multi-modal models (Low-rank Multi- 

odal Fusion (LMF) [34] and Tensor Fusion Network (TFN) [61] ). 

or LSTM-based text-only model, we first remove meaningless 

haracters from texts with regular expressions and then imple- 

ent Chinese word segmentation. Word2vec model from the gen- 

im toolkit is used to obtain word embedding. The representation 

s further passed to the LSTM or BiLSTM model for classification. 

e divide the full dataset randomly into training and test set at a 

atio of 8:2. The model is implemented by TensorFlow, using an In- 

el i5-9400F CPU and NVIDIA TITAN RTX GPU. All experiments are 

rained with Adam optimizer, and the initial learning rate is set to 

e-3 and decreases every 2 epochs at a rate of 0.5. The batch size

s 64. 

The testing accuracies, average precision score (AP) and F1- 

core of baseline models are shown in Table 4 . We can see that

he multi-modal methods (VGG+BiLSTM, LMF [34] and TFN [61] ) 

chieved better results than single-modal methods, which demon- 

trates the advantage of multi-modal product classification over 

ingle-modal-based methods. The results also show that the text- 

ased classification is much easier than the image-based one and 

eveal the potential of utilizing text information as weak annota- 

ions to improve the vision models. 
7 
Then we compare the classification tasks on different label 

evel. For image-only setting, we use a ResNet-50 as feature ex- 

ractor. For text-only setting, we use a pre-trained BERT model. For 

ach of them, we use two 4096-d fully connected layers as the 

lassifier. The results are shown in Table 5 . It can be seen that first

evel classification is much easier than the second and the third 

evel. Comparing the results of ResNet and BERT, we find a large 

erformance gap between them. It indicates that image-only clas- 

ification task is much harder than text-based ones. It is partially 

ue to the fact that the images of MEP-3M are fine-grained. We 

elect the nearest neighbors of several images to demonstrate this 

oint. The clustering is done by calculating the pixel-wise distance. 

s shown in Fig. 8 , many images are visually similar but belong to 

ifferent classes. 

Except the fine-grained nature of MEP-3M, the lone-tailed dis- 

ribution may also brings additional challenge. To verify this point, 

e evaluate the per-class accuracy of the ResNet trained on third- 

evel labels, and analyze the relationship between the number of 

ach class’s training sample and its corresponding testing accuracy. 

he results are shown in Fig. 8 . We find that with the number of

raining sample decrease, the lower bound of per-class classifica- 

ion accuracy drop sharply. The lowest accuracy approaches 14.29%. 

n the opposite direction, we find that 60 0 0+ training samples 

ould yield satisfying per-class accuracy. 

. Hierarchical product classification 

.1. Data and task 

Hierarchical classification [25,51] , or coarse-and-fine learning 

9] , is an active research area in the machine learning field [49,57] .

t shares many similarities with fine-grained learning, such as they 
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Fig. 7. Two groups of visually similar images that belongs to different classes. 

Fig. 8. The relationship between the number of sample per class and the per-class accuracy. 

8 
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Fig. 9. Illustration of the hierarchical structure of MEP-3M. Note that this fig- 

ure only shows about 10% of the entire MEP-3M. 
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oth require a model to recognize the subtle differences between 

lasses. The key difference between them lies in the fact that fine- 

rained learning usually has only one level of labels, but hierarchi- 

al classification covers multiple levels of labels. One hierarchical 

odel should recognize both coarse classes and finer sub-classes 

t the same time. One distinguished feature of our MEP-3M dataset 

s that it is hierarchically categorized. As shown in Fig. 9 , there 
9 
re three levels of the label in MEP-3M, including 14 classes (first 

evel), 599 sub-classes (second level), and 13 sub-classes have fur- 

her subsub-classes (third level). These hierarchical labels MEP-3M 

ake it a suitable dataset for experiments of hierarchical classifi- 

ation algorithms. Compared to the CIFAR-100 dataset or ImageNet 

ataset that has been commonly used by well-known hierarchical 

lassification models, our MEP-3M dataset provides three levels of 

abels, E-commerce product domain images, and more importantly, 

ulti-modal data. Based on the characteristics of its hierarchical 

nnotations, we point out two possible tasks on MEP-3M for hier- 

rchical classification studies: 

• Weakly-supervised hierarchical classification. Current hierar- 

chical classification tasks can be divided into two types. The 

first is all samples are labeled with both coarse-and-fine la- 

bels, while in the second type only part of the samples has 

fine labels. Since coarse labels are easier to collect than fine 

labels, the second type is much closer to a real-world scenario. 

Our MEP-3M falls in this type. For example, one E-commerce 

platform may end up with “fruits” class, while the other may 

further classify the “fruits” into “apples”,“bananas”, “pitches”, 

etc. In this case, the samples from the first platform have only 

coarse labels, they can be served as weak supervision that as- 

sist finer-grained classes learning [24,29,40] . 
• Multi-modal hierarchical classification. It should be noticed 

that most existing hierarchical classification studies are in 

single-modal settings. One likely reason is that there are 

not many multi-modal hierarchical classification datasets. With 

MEP-3M, we propose a novel learning task: multi-modal hi- 

erarchical classification. Compared to traditional hierarchical 

classification, multi-modal setting brings additional challenge 

that the model should simultaneously learn different granular- 

ity within ( e.g. , “fruits” v.s. “apples”, “bananas”, “pitches”) and 

across modalities ( e.g. , a samples of “apples” class may contain 

text like “fresh fruit”). 

.2. Baseline results 

We present three baseline approaches that aim to make full use 

f the hierarchical annotations of MEP-3M. Specifically, our goal is 

o improve classification accuracy with finer-grained information. 

or example, for the baseline of first-level classification on MEP- 

M in Section 4 ( Table 5 ), only the corresponding 14-way labels 

re available. Such results might be further improved when more 

nformation is available ( i.e. with 599-way labels and 688-way la- 

els). Inspired by Guo et al. [18] , we design three baseline mod- 

ls. Their network structures are shown in Fig. 10 . We combine 

hem with the three baselines in Section 4 by attaching them to 

he features extracted by ResNet, BERT, and ResNet+BERT. The fea- 

ures are passed to a series of dense layers with skip connections. 

hree classifiers corresponding to the three levels in the category 

ierarchy are connected with dense layers in different orders. The 

etwork is trained with a joint loss composed of cross-entropy 

osses of the three classifiers. During training, the backbone net- 

ork (ResNet/BERT) is fixed as in [18] . 

The results are shown in Table 6 . We note accuracy improve- 

ents in parentheses. For most settings, the classification accura- 

ies got improved, which shows the effectiveness of hierarchical in- 

ormation. As shown in the ”Average improvement” row in Table 6 , 

ll of the three hierarchical classification algorithms bring improve- 

ents on average, and the “coarse to fine” setting with +0.71% 

mprovement is the best one by comparison. In addition, the re- 

ults also illustrate that hierarchical information is more beneficial 

o image model (ResNet) compared to text model (BERT). The best 

mprovement (+1.20%) in this table is introduced by the image-only 

oarse to fine model, and both of the remaining hierarchical clas- 
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Fig. 10. Network architectures of proposed baselines for hierarchical classifications. The dotted lines represents skip connections. 

Table 6 

Hierarchical classification results. 

Model Baseline coarse to fine fine to coarse coarse and fine 

ResNet 88.81% 90.01% ( + 1.20%) 89.50% ( + 0.69%) 89.73% ( + 0.92%) 

BERT 98.76% 98.58% (- 0.18%) 98.61% (- 0.15%) 98.61% (- 0.15%) 

ResNet + BERT 97.70% 98.81% ( + 1.11%) 98.81% ( + 1.11%) 98.81% ( + 1.11%) 

Average improvement - + 0.71% + 0.55% + 0.63% 
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ification algorithms on ResNet also yield improvements (+0.69% 

nd +0.92%). However, for BERT-based models, the hierarchical in- 

ormation fails to improve the performance. This may be due to the 

act that text classification is generally easier than image classifica- 

ion and the naive baseline for text classification already performs 

ery well at 98.76% 

. Fine-grained product classification 

.1. Data and task 

In recent years, with deep learning technologies, researchers in 

he computer vision community have made remarkable progress 

n Fine-Grained Image Analysis (FGIA) tasks [38,53,65] . However, 

GIA still remains an challenging and unsolved problem due to the 

mall inter-class variation and the large intra-class variation. Our 

EP-3M is collected from several E-commerce platforms. The la- 

el granularity is different across different platforms. On one hand, 

his fact brings additional need for label alignment when merge 

ulti-source data into a single dataset (as described in Section 3 ). 

n the other hand, we can naturally acquire several groups of 

igh-quality coarse-and-fine label annotations. 

Based on this, we select four sub-classes and accordingly build 

p four fine-grained subsets from MEP-3M. The selected sub- 

lasses (may also be named as “meta-classes” or “super-classes”) 

nclude meat, mobile phone accessory, jewelry, and outdoor equip- 

ent. The resulting subsets are respectively named as MEP- 

utdoors , MEP- meats , MEP- accessories and MEP- jewelries . Among 

hem, MEP- outdoors is divided into 17 categories including back- 

ack, climbing equipment, sleeping bag and so on, and MEP- 

eats contains 18 categories including chickens, ducks, fishes, etc. 

he MEP- accessories is made up of 7 categories, such as mobile 

hone holder, cell phone battery, earphones and so on, and MEP- 

ewelries involves 12 categories including diamond, jade, etc. In 

verage, each category in these datasets has 40 0 0-50 0 0 samples. 

able 7 gives an detailed comparison between presented four MEP- 

M fine-grained subsets and existing fine-grained datasets. Our 

atasets enjoy four unique characteristics compared to existing 

ne-grained datasets, as listed in the following: 
10 
• Novel meta-class. Existing fine-grained datasets mainly cover 

different types of animals (birds [8,50] , dogs [26] ), plants (flow- 

ers [36] , vegetable [23] , fruits [23] ), vehicles (cars [27] , planes

[35] ). A few of existing datasets involves products, such as 

clothes [17] , retail products [52] , etc. Comparatively, our pre- 

sented fine-grained subsets of MEP-3M are with very different 

meta-classes. To our best knowledge, there are not any exist- 

ing fine-grained image datasets that specifically focus on meat, 

mobile phone accessory, jewelry, or outdoor equipment. 
• Novel image domain. . The images in most existing fine-grained 

datasets are collected in the wild [21] or in a controlled en- 

vironment [52] , but the images in our fine-grained subsets of 

MEP-3M are E-commerce product images, which usually have 

cleaner backgrounds and sometimes contain OCR information. 

Moreover, although our datasets are not annotated with the 

bounding box, it should be noticed that E-commerce product 

images are implicitly annotated. The seller (who uploads the 

product image) tends to place the product in the center of 

the image and adjust it to a proper size. This characteristic 

is unique compared with most existing datasets that contains 

photos in the wild, and leads to the potential of applying self- 

supervised learning technologies 
• Multi-modality. Recently, the combination of multi-modal 

learning and FGIA attracts much attention [39,44,56] . Most 

studies in this direction use the CUB-200-2011 dataset and Ox- 

ford Flowers dataset, in which the text modality is collected 

by Reed et al. [39] .. Specifically, the text is annotated through 

Amazon Mechanical Turk (AMT) platform by “non-Master” cer- 

tified workers. Our fine-grained subsets differ from theirs in 

two aspects. First, the text description of our datasets is in Chi- 

nese instead of English. Second, our text description is much 

more accurate and informative since it is given by the product 

seller. With such text data, the MEP-3M fine-grained subsets 

can also be considered as multi-modal fine-grained datasets 

with complementary vision-language information and high- 

quality text annotations. 
• High diversity. As shown in Fig. 11 , we sampled some images 

from our four fine-grained datasets. Many of the images have 

very small inter-class variance (as noted by green dotted box), 

and at the same time, the intra-class variance (horizontal axis) 

is large. In other words, these fine-grained subsets provide im- 
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Table 7 

Comparison between our presented MEP-3M fine-grained subsets and widely used fine-grained datasets. 

Dataset Meta-class # Images # Categories Modaility 

Oxford Flower [36] Flowers 8,189 102 Image/Text (English) 

CUB200-2011 [50] Birds 11,788 200 Image/Text (English) 

Stanford Dog [26] Dogs 20,580 120 Image 

Stanford Car [27] Cars 16,185 196 Image 

FGVC Aircraft [35] Aircrafts 10,000 100 Image 

Birdsnap [8] Birds 49,829 500 Image 

Fru92 [23] Fruits 69,614 92 Image 

Veg200 [23] Vegetable 91,117 200 Image 

iNat2017 [21] Plants and Animals 859,000 5,089 Image 

RPC [52] Retail products 83,739 200 Image 

MEP- outdoors Ours Outdoor equipment 82,187 17 Image/Text (Chinese)/OCR 

MEP- meats Meats 68,102 18 Image/Text (Chinese)/OCR 

MEP- accessories Mobile phone accessories 34,168 7 Image/Text (Chinese)/OCR 

MEP- jewleries Jewelries 28,193 12 Image/Text (Chinese)/OCR 

Table 8 

The classification accuracies of different baseline methods on MEP-3M fine-grained 

subsets. 

MEP- accessories MEP- jewelries MEP- outdoors MEP- meats 

ResNet 90.95% 64.88% 69.39% 64.76% 

BERT 99.27% 100% 93.44% 81.66% 
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R

i

ages with high diversity. In addition, in existing fine-grained 

learning datasets, one category normally has only around one 

hundred samples. In comparison, MEP-3M fine-grained subsets 

have up to several thousand images per category. These im- 

ages carry very different patterns and result in a very high 

diversity, which brings challenges for visual models. Such di- 

versity, combined with other three characteristics as men- 

tioned before, will make these fine-grained subsets valuable for 

researching. 

.2. Baseline results 

We also present baseline results to benchmark MEP-3M fine- 

rained subsets. As before, an image-only ResNet and a text-only 

ERT are employed to perform fine-grained classification. The re- 

ults are shown in Table 8 . Similar to the baseline results of MEP- 

M ( i.e. , Table 4 ), there is a large gap between the performance of

he image-only model and the text-only model. In addition, we no- 

iced that the baseline performance of the four subsets differs sig- 

ificantly from each other. There are mainly two reasons for this. 

irstly, the number of categories varies across the datasets, lead- 

ng to varying levels of difficulty in learning a classification model. 

econdly, the samples in the MEP-3M dataset are diverse because 

hey are collected from different platforms, and the qualities of 

amples in different categories and modalities may also be differ- 

nt. Based on the results, the four subsets can be described as: 

trong image and strong text (MEP- accessories ), weak image and 

trong text (MEP- jewelries ), and weak image and weak text (MEP- 

utdoors and MEP- meats ). This classification of strong and weak is 

ot only evident in the experimental results, but can also be seen 

n the dataset samples. For example, as shown in Fig. 11 , the im-

ge samples in the MEP-accessories subset are generally easier to 

ecognize because different categories have significantly different 

isual patterns. As a result, the ResNet-based classification model 

chieved a high accuracy (90.95%) on MEP-accessories. In contrast, 

n the other three datasets, the ResNet-based model only achieved 

ccuracies of around 60% to 70% because the images have smaller 

nter-class differences (especially for the images in green dotted 

oxes in Fig. 11). As for the BERT-based text classification models, 

he accuracies in MEP-accessories and MEP-jewelries are very high 

99.27% and 100%) because many product titles contain the exact 

lass names. However, in MEP-outdoors and MEP-meats, the titles 
11 
re generally shorter and contain more irrelevant information, re- 

ulting in lower accuracies. 

. Product representation learning 

.1. Data and task 

In this section, we propose another special subset and a practi- 

al usage of MEP-3M. We present MEP- for-RPC : as a pre-training 

ataset for the Automatic Checkout (ACO) task. ACO is a novel 

omputer vision task, which refers to recognize and count prod- 

cts from a given image. ACO has high research value since it has 

he potential to reduce human labor amount in the retail industry 

54] . However, such task is particularly challenging since a model 

eeds to recognize subtle differences between a large number of 

roducts. Moreover, due to the rapid updating of the products, it is 

esirable to perform online learning to avoid frequent re-training. 

n 2019, Wei et al. [52] introduced a high-quality dataset for the 

CO problem named Retail Product Checkout (RPC) dataset. Com- 

ared to previous relevant datasets, RPC has a more clearly defined 

CO task setting. It is also significantly larger and closer to real- 

orld application scenarios. Existing solutions [30,52,55,59] on RPC 

ataset mainly used GAN-based data augmentation [66] to syn- 

hesize training images from single-product exemplar images. Al- 

hough the number of samples can be significantly increased, the 

iversity of synthesized training data is limited. As a result, the 

obustness and generalization ability of learned feature represen- 

ation of an ACO model is limited, which is also undesirable in the 

nline learning scenario. 

Therefore, we propose to use the MEP-3M dataset to improve 

he feature for ACO task on RPC. We select a special subset of MEP- 

M named MEP- for-RPC to exclude unrelated samples in MEP-3M. 

pecifically, 26 sub-classes in MEP-3M that have semantic overlap 

ith RPC are selected. Due to difference in granularity, there is a 

any-to-many correspondence between RPC dataset and MEP- for- 

PC dataset. For example, as shown in Fig. 12 , the “personal hy- 

iene” (id = 15) in RPC dataset corresponds to four different sub- 

lasses in MEP- for-RPC , while “candy/choclate” (id = 304) in MEP- 

or-RPC dataset covers three classes in RPC dataset. Our MEP- for- 

PC dataset has a total of 118,170 different products, which is 500 

imes larger than the RPC dataset. As a result, as shown in Fig. 12 ,

he samples in MEP- for-RPC have significantly larger variance than 

PC. Such variance is beneficial for learning robust product repre- 

entation and improving ACO model. 

.2. Baseline results 

To demonstrate the superiority of the pre-training on MEP- for- 

PC , we conduct a comparative experiment simulating a real-world 

ncremental online learning scenario. We first divide the training 
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Fig. 11. Examples of presented MEP-3M fine-grained subsets. From top to bottom: MEP- jewelries , MEP- outdoors , MEP- meats , MEP- accessories . The key challenge on our 

datasets lies in the small inter-class variance (as noted in green dotted boxes) and large intra-class variance (horizon axis). 
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et of RPC into base classes and novel classes. The novel class rep- 

esents the newly updated products. From each of 17 meta classes 

n RPC dataset we select two products as novel class, and leave 

he rest classes as base class. It splits a total of 200 classes in RPC

nto 166 base classes and 34 novel classes. We randomly select 10 

mages for each class as training data. We conduct experiment to 

alidate the effectiveness of pre-training on MEP- for-RPC . A random 
12 
nitialized ResNet is firstly trained with 166 base classes only, and 

hen transferred to classify 200 base + novel classes. The compar- 

son of with pre-training has the same transferring pipeline, ex- 

ept the ResNet is initialized with weights pre-trained on MEP- for- 

PC . The results are shown in Table 9 . We present the final accu-

acy of all classes (166 base classes + 34 novel classes) and the 

ccuracy of only the novel class. It can be seen that the represen- 
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Fig. 12. Class correspondence between RPC dataset and MEP- for-RPC dataset. 

Table 9 

Comparison of MEP- for-RPC pre-training 

Pre-training on MEP- for-RPC Accuracy-all Accuracy-novel 

× 59.63% 52.05% √ 

64.40% 64.01% 
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ation learned from MEP- for-RPC pre-training effectively improves 

he performance of retail product classification. Moreover, the ac- 

uracy of novel class is lower than overall accuracy without pre- 

raining, while the accuracy-all and accuracy-novel are almost the 

ame under the pre-training setting. It indicates that the feature 

epresentation learned from MEP- for-RPC is more robust than the 

eature learned from RPC only. 

. Conclusion 

This paper introduced MEP-3M, a large-scale multi-modal E- 

ommerce product dataset, which is unique in terms of its large- 

cale, multi-modality, hierarchical and fine-grained categorization, 

nd long-tailed distribution. One of the key strengths of MEP-3M 

s its alignment with recent progress in the field of vision-language 

esearch, which makes it a valuable resource for researchers to ex- 

lore the challenges and opportunities of multi-modal learning in 

he context of E-commerce products. For instance, with its large- 

cale data, MEP-3M can serve as a powerful pre-training dataset 

or E-commerce vision-language foundation models. 

However, the MEP-3M dataset also has several limitations that 

eed to be considered. First, although the dataset covers 599 fine- 

rained product categories, it may still not include all the possi- 

le product categories in the E-commerce domain. The reason is 

hat the products of E-commerce platforms are constantly updat- 

ng, making it difficult to keep all the categories up-to-date. This 

an limit the generalizability of the models trained on MEP-3M to 

eal-world E-commerce scenarios. Second, the data quality of MEP- 
13 
M may also affect the performance of the models. For example, 

ome images or textual descriptions may contain noise, which can 

egatively impact the learning process. 

Despite these limitations of MEP-3M, we believe that it has 

he potential to advance the field of vision-language research, and 

ake a significant impact on E-commerce related research. In the 

uture, we plan to continuously expand the dataset and improve its 

uality by label denoising and image enhancement. Additionally, 

e will further extend the MEP-3M dataset to more applications, 

uch as cross-modal retrieval and product clustering, to meet the 

rowing needs of the research community. We hope to see more 

esearchers using MEP-3M to explore new ideas and develop more 

dvanced models. 
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