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ABSTRACT

The product categories are vital for the E-commerce platforms due to the core applications on auto-
matic product category assignment, personalized product recommendations, etc. In this paper, we con-
struct a large-scale Multi-modal E-commerce Products classification dataset MEP-3M, which is large-
scale, hierarchical-categorized, multi-modal, fine-grained, and long-tailed. Statistically, MEP-3M consists
of over 3 million products, thus achieves the largest data scale in comparison to the existing E-commerce
product datasets. The products in MEP-3M are represented in three modalities: image, textual descrip-
tion, and OCR text, and labeled with tree-like labels. The third level labels are extremely fine-grained. In
addition, we exploit four novel practical tasks on this dataset, Product classification, Hierarchical Product
Classification, Fine-grained Product Classification, and Product Representation Learning. For each task, we
present some image-only, text-only, and multi-modal baseline performances for further researches. The

Automatic Checkout

MEP-3M dataset will be released at https://github.com/ChenDelong1999/MEP-3M.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The recent rise of deep learning can be traced back to the cre-
ation of ImageNet dataset [14] and the revival of deep Convolu-
tional Neural Network (CNN) [6,28,32,33,64]. Since then, the com-
bination of increasingly complex neural network architectures and
increasingly large datasets fundamentally revolutionized Computer
Vision (CV) and Natural Language Processing (NLP) fields. In recent
years, the research communities are gradually moving from these
single-modal tasks to multi-modal tasks [5,11]. Large-scale multi-
modal datasets, especially vision-language datasets (e.g. Flickr30K
[60], Multi30K [16], MS-COCO [3], SBU Captions [37], WIT [45]),
have been constructed and presented. These datasets enable re-
searchers to develop multi-modal models, which learn to utilize
the complementary information across different modalities and
bring the opportunity to combine the advancements across differ-
ent fields to further improve the model performance.

Another recent hot topic in deep learning field is fine-grained
learning, which aims to discover the subtle differences between
different sub-categories, such as birds [22], dogs [46], cars [58],
and castles [2]. A lot of fine-grained datasets are created to pro-
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mote the development of this domain, such as iNaturalist [20],
Products-10k [7], and iMaterialist Fashion [17]. Notably, lots of E-
commerce-related datasets have been proposed. A possible reason
is the construction of this type of dataset can rely on the pre-
defined hierarchical categorization information (e.g., Stock Keeping
Unit, SKU).

However, recent E-commerce datasets only focus on one aspect
from multi-modal or fine-grained without integrating them to-
gether. Moreover, many E-commerce product datasets remain non-
public [10,13,19,31,48,62]. In this paper, we construct a large Multi-
modal E-commerce Products classification dataset named MEP-3M,
which provides multi-modal and fine-grained data. It is collected
from several Chinese large E-commerce platforms and consists of
over 3 million image-text pairs of products and 599 classes. Since
different E-commerce platforms have different product class la-
beling schemes, we design a text similarity-based label alignment
scheme to automatically merge the multi-source data. For each
product, the corresponding image and the product title text are
collected. Moreover, since a large amount of E-commerce product
contains text information in image, we also extract OCR text and
provide it as another modality. As demonstrated in Fig. 1, MEP-3M
consists of the second largest number of products, even compared
with the single-modal E-commerce product datasets.

Here we briefly summarize the key characteristics of our MEP-
3M: Large-scale: MEP-3M dataset consists of over 3 million prod-
uct samples in total. Each sample consists of an image-text pair,
resulting in 3,012,959 images and 156,069,329 characters. The en-
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Fig. 1. The comparison between our presented dataset and existing public E-commerce product dataset.
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Fig. 2. Images randomly selected from the MEP-3M dataset. Our dataset covers a wide range of E-commerce products.

tire dataset takes approximately 76GB of storage. Hierarchical-
categorized: Three levels of the label are given. There are 14
classes (first level), 599 sub-classes (second level), and 13 sub-
classes have further subsub-classes (third level). Multi-modal:
Each product has both image and Chinese label and title. Some
image samples and the text cloud of the titles are given in Fig. 2
and Fig. 3. Fine-grained: Among a total of 599 sub-classes, many
samples are visually similar but belong to different sub-classes.
Long-tailed: MEP-3M is highly imbalanced. Some sub-classes in
the dataset have more than 90k samples, while some classes have
around 30 samples.

We note that the preliminary version of MEP-3M dataset has
been published in the IJCAI 2021 Workshop on Long-Tailed Dis-
tribution Learning?. The dataset presented in this paper is an im-
proved and extended version. In the following, we summarize the
main contribution of this paper:

o We constructed a large-scale multi-modal E-commerce product
dataset MEP-3M. The data are collected and merged from sev-
eral E-commerce platform. MEP-3M has three modalities (i.e.,
image, text, OCR) and three levels of labels. We present base-
line results of product classification on these three modalities
and three levels.

2 https://ltdl-ijcai21.github.io

* We investigated the potential of hierarchical classification on
MEP-3M and present three baselines to utilize the information
from both coarse and fine labels. We pointed out that weakly-
supervised hierarchical classification and multi-modal hierar-
chical classification are promising research direction on MEP-
3M.

We presented MEP-meats, MEP-accessories, MEP-jewelries, and
MEP-outdoors as four fine-grained subsets of MEP-3M. Their
uniqueness includes novel meta classes, novel image domains,
and multi-modal data. Baselines for these subsets are also pro-
vided.

We presented another special subsets named MEP-for-RPC and
demonstrate that pre-training on it can effectively improve the
models for Automatic Checkout (ACO) task.

The rest of this paper is organized as follows. We first review
and compare existing E-commerce product datasets in Section 2.
We describe the collection and construction process of MEP-3M
in Section 3. In Section 4, Section 5, Section 6 and Section 7,
we present four novel practical tasks on MEP-3M: Product clas-
sification, Hierarchical Product Classification, Fine-grained Product
Classification, and Product Representation Learning. For each sec-
tion, we first introduce the task and corresponding data, then
present our baseline solutions and results. Section 8 concludes the

paper.
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Fig. 3. The text cloud (after jieba word segmentation) of product title in the MEP-3M dataset. The text size corresponds to the appearance frequency.

2. Related work

Product classification is a critical issue for an E-commerce plat-
form since it can significantly improve the accuracy and reduce
the workload of manual product category assignments. Since the
product title usually aims at delivering the product information
to users accurately and comprehensively as possible, text-based
product classification has drawn more attention in the past years.
In contrast, image data is generally harder to collect than text
information, but its effectiveness is well demonstrated by a re-
cent study [62]. Therefore, in this section, we review and compare
our presented MEP-3M dataset with several E-commerce product
datasets, and mainly focus on image-based ones.

In the past several years, different methods have been pro-
posed to improve the performance of product classification, and
many product datasets are collected and constructed, but unfortu-
nately, they remained non-public [10,13,19,31,48,62]. On the other
hand, there is also some public product dataset that only focuses
on a limited subset of products (such as iMaterialist Fashion [17]),
but classification models on this type of dataset are not applica-
ble for general E-commerce platforms. Meanwhile, there are also
some retail groceries datasets such as RPC dataset [52], but they
differ from E-commerce datasets fundamentally since they are cre-
ated for training automatic checkout systems. In the following, we
briefly review the existing public E-commerce product datasets
that aim at general products categories.

Stanford Online Products® [43] is a E-commerce product
dataset collected by a group from Stanford University using the
web crawling API of eBay.com. Duplicate and irrelevant images
in the dataset are filtered out. Each product in this dataset has
approximately 5.3 images.

iMat Challenge@FGVC6* is the dataset of iMaterialist Challenge
on Product Recognition at FGVC6, CVPR 2019, provided by Ma-
long Technologies and FGVC workshop. This dataset has a total
number of 2,019 product categories, which are organized into a
hierarchical structure with four levels.

SIGIR 2020 E-commerce’ [1] refers to the dataset used by SI-
GIR 2020 eCom Rakuten Data Challenge. It is a multi-modal
dataset, where each sample consists of the image, the title, and
the description of a product. Text information is in French.

w

https://github.com/rksltnl/Deep-Metric-Learning-CVPR16
https://www.kaggle.com/c/imaterialist- product-2019/data
https://sigir-ecom.github.io/fecom2020/data-task.html

[EIFS

AliProducts® [12] is a large-scale fine-grained SKU-level E-
commerce product dataset without human-labelling. It also
contains side information, such as hierarchical relationships be-
tween classes.

Products-10K’ [7] is a large-scale product recognition dataset
covering 10k fine-grained SKU-level products from JD.com. It
contains both in-shop photos and customer images. All samples
are manually checked to reduce noise.

Product1M® [63] is a multi-modal cosmetic dataset for real-
world instance-level retrieval. It consists of both single-product
and multi-product samples, and each sample of the dataset
contains an image-caption pair. The samples in the Product1M
dataset encompass a wide variety of cosmetics brands. Some
appealing characteristics of this dataset including well mimic
the real-world scenes, including fine-grained categories, com-
plex combinations, and fuzzy correspondence.

M5Product® [15] is a large-scale multi-modal pre-training
dataset with coarse and fine-grained annotation. It contains 6
million multi-modal samples and 5,000 properties with 24 mil-
lion values. It is also annotated with 6,000 classes and the
dataset also presents five modalities of data, including image,
text, table, video and audio.

A detailed comparison of the MEP-3M dataset and the exist-
ing public E-commerce datasets is shown in Table 1. Importantly,
among the above datasets, only four datasets are multi-modal,
which are SIGIR 2020 E-commerce dataset, ProductlM dataset,
M5Product dataset and MEP-3M dataset. Compared to SIGIR 2020
E-commerce dataset, our MEP-3M dataset has much more sam-
ples and more categories. Moreover, the text of the SIGIR 2020
E-commerce dataset is in French, while our dataset is in Chi-
nese. Since China has been the world’s largest online retail mar-
ket, the MEP-3M dataset may have more potential application
value. Though the texts of the Product1M dataset and M5Product
dataset are also in Chinese, the two datasets are quite differ-
ent from our MEP-3M dataset. For example, the sample domain
of the Product1M dataset is limited to cosmetics only, while the
MEP-3M dataset includes a total of 599 general categories. Ad-
ditionally, MEP-3M has more than three million samples, mak-
ing it approximately three times larger than Product1M. Although
the M5Product dataset is larger in scale, MEP-3M has several

6 https:/
7 https:/
8 https:/
9 https:/

[tianchi.aliyun.com/competition/entrance/231780
Jwww.kaggle.com/c/products-10k
/github.com/zhanxlin/Product1M
/xiaodongsuper.github.io/M5Product_dataset/
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Table 1

Comparison with existing E-commerce datasets.
Dataset Year #class #image Modality
Stanford 2016 23K 0.120M image
iMat FGVC6 2019 2K 1.012M image
SIGIR 2020 2020 27 0.098M image, text (French)
AliProducts 2020 50K 2.500M image
Products-10K 2020 10K 0.150M image
Product1M 2021 458 1.182M image, text (Chinese)
M5Product 2022 6K 6.313M image, text (Chinese), table, video and audio
MEP-3M 2021 599 3.012M image, text (Chinese), OCR

unique characteristics and advantages. For instance, the class la-
bels in MEP-3M are organized in a hierarchical tree structure,
while M5Product only has a single level of categories. Addition-
ally, MEP-3M includes OCR as an additional modality, which is
not included in the M5Product dataset. Furthermore, a MEP-for-RPC
subset has been derived from MEP-3M to benefit downstream re-
tail product checkout models, and we also demonstrated this po-
tential. Finally, rather than being sourced from a single platform
like M5Product, MEP-3M contains samples collected from multiple
e-commerce platforms, which increases the diversity of MEP-3M
samples. Moreover, the label of the E-commerce platform can be
used as an auxiliary source of supervision signal. For example, it is
possible to use the platform labels to learn domain-adapted prod-
uct representation.

3. MEP-3M dataset
3.1. Data collection

The collected images are stored in .jpg or .png file format. We
find that a large proportion of images contain texts. Therefore, be-
sides image and text, we also extract the OCR text as another com-
plementary modality. A text detection model from [4] and a text
recognition model from [41] for OCR extraction. We extract both
Simplified Chinese characters and English characters. The extracted
texts are concatenated into a single line of text. From the extracted
OCR texts, We find that some of them provide information that de-
scribe features of the product or have strong relationship with the
product category, as shown in the top of Fig. 4. But as the bottom
of Fig. 4, some other OCR text are irrelevant to the product, such
as promotional information.

In the following, we give an example of an item in MEP-3M
dataset annotation file.

{

'class_id': '5',

"class_name': '& @ / WK / A8 / B

'sub_class_id': '523"',
'sub_class _name': 'K E',
'subsub_class_id': '640"',

l——ﬂﬁ&;%"

'Images/523/3.jpg"',

'subsub_class_name':
'img_path':
'img_resolution': (220, 220, 3),
"title': ' [# 2 # 9.8 ,

'OCR': 'FLASE'

2 HRELWH 10 FY BEHkBELOLE
HERASAREHEKERTEN —EFHEHEE 5 FE (BE 5 F

The class_id denotes the first level of class label, ranging
from 1 to 14. The sub_class_id is the second level of class la-
bel, ranging from 1 to 599. The subsub_class_id corresponds
to the third level index, which ranges from 600 to 688. Construc-
tion of these three level of labels will be described in Section 3.2.
The rest fields img_path, img_resolution, title, and OCR
provide the information of product image, title text, and OCR text.
For the image without OCR, the OCR field is set to 'FLASE'.

3.2. Multi-source label alignment

This section introduce our proposed method of aligning multi-
source labels. The label alignment is based on the analysis of the
collected first-level labels (denote as ‘class’) and second-level la-
bels (‘sub-class’). To take the different granularity across different
E-commerce platforms into account, we also create third-level la-
bels (‘subsub-class’) for some of the sub-classes.

For first level, due to the number of classes are relatively small
(all the platforms have less than 20 first level classes), we man-
ually align them across different platforms. Classes with similar
meanings are merged to a single class, whose new class_name is
designated to cover the meaning of both sides. Meanwhile, unique
classes are preserved as separated classes. Finally, there are a to-
tal of 14 different first level classes. A number is assigned to each
class as its class_id. The class_id and the corresponding
class_name of all the 14 first level classes are shown in Table. 2.

The number of sub-classes is far more than the first level, mak-
ing manual alignment impossible. Therefore, we design an au-
tomated alignment approach based on quantitative text analysis.
Specifically, the goal of the alignment is to figure out the sub-class
pairs that are semantically similar across different E-commerce
platforms. We assume these sub-class pairs have the following

'
>

T¥XR 5K
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Fig. 4. Examples of OCR information in MEP-3M dataset. Top: informative OCR texts. Bottom: less informative OCR texts.

Table 2

The Numbers of samples and sub-classes of the 14 classes.
class_id class_name (CN) class_name (EN) #sample  #sub_class
1 FHLAE B Mobile phones/Digital devices 122,312 21
2 FHIHLAS Home appliance 240,779 51
3 BN DIV Computers/office 85,699 17
4 K| F A %% (%Y E. Home/decoration/kitchen 534,460 123
5 B [T A ff Foods/drinks 411,046 53
6 %Jtc//‘i‘)f'(g{ /92% Health care/makeup 139,049 30
7 BEBBOH [ Baby care/ toys/clothes 337,425 73
8 izgh/ Pt Sports/outdoors 346,451 54
9 AL [ [ AC [k L Clothes/shoes 536,842 110
10 Rk Bk F Luggage/jewelries 86,648 13
11 LR AL AL A 5 S Art/flowers/plants 46,316 14
12 VI U 157 Cars service 66,963 21
13 [&45 Books 23,208 5
14 = 2 (i [T Pharmaceuticals 35,761 14

three characteristics: 1) they belong to the same first level class,
2) their names share a certain degree of similarity, 3) their title
contents have similar features on term frequency. For the second
and the third characteristics, we respectively calculate label simi-
larity Sjqpe; and content similarity Sconcene as metrics.

The label similarity S, measures how far the two sub-class
names coincide with each other, it is defined as:

Siaper = 2.0 x M/T (1)

, where T indicates the total number of characters in both sub-
class names, and M indicates the number of matches. Note that
this is 1.0 if the sub-class names are identical, and 0.0 if they have
nothing in common.

The content similarity Scontens i the cosine distance between
term-frequency features extract from the title text content of two
different sub-classes, it is defined as:

X1-X2
llxa [l < [|x2]]

(2)

Scontent =

, where x; and x, are the term-frequency feature vector of title
text content. Each element in x; and x, counts the number of oc-
currences of a certain term.

The S44; are calculated by using python difflib package'®, while
the Scontene is based on python simtext package!!. In order to im-
prove computational efficiency of Sconensr, We use the first 22000
characters of a sub-class product titles, corresponding to approx-
imately 450 products. We iterate over all the sub-class pairs that
belongs to the same classes, and filter them according to the fol-
lowing criterion:

slabel > 0.50 AND Scontent > 0.75 (3)

The hyper-parameter of 0.50 is chosen by empirical hyper-
parameter tuning. As for Sconrenr, We first retrieve all sub-class
pairs that have a Sjg;, = 1.00 (i.e., with identical class names), and
calculate the Sconrent between these sub-class pairs. The averaged
Scontent is 0.75, and we use this value as the threshold of Scontent.

10 https://docs.python.org/3/library/difflib.html
1 https://pypi.org/project/simtext
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sub-class name sub-class name Siabel Scontent new class name (CN) new class name (EN)
JLEARR ILEER 1.00 0.929 JLEARR Children’s tableware
ZE g Ay ZE BTy 1.00 0.898 ZE gy Ay Milk powder during pregnancy
251 =3 1.00 0.870 251 Air conditioner
BT AR 1.00 0768  WifTHs Cycling equipments
RS Ve R 1.00 0.705 Ve IR Bath supplies
Bk B LYy 0.89 0960  Z4hILYK Infant milk powder
LM e 0.67 0907 & Wipes
W/ 5 5% I 0.57 0.854 VIS EEEES Coffee/milk tea
okt [resiven 0.67  0.849 YRR Beverages
IVASCH IINAIAL 075 0756  JAUX Office stationery
Sub-class Distribution > 654111 Image Resolution Distribution
KR 190,133 v -
PSS ] 88,079 61,223 34321 29,703
. 5,851
[AES ] 71,658
149
1E+02
295 sub-classes omitted... H 2
Se3/RK 1E+00 =
. 792 220x220 64x50 75x75 60x60 54x54 100x75 8OOXB0O 219x220
RE/RH 4,791
B T 4,780 Title Length Distribution
200,000
180,000
295 sub-classes omitted... 160,000
140,000
IRRBRAR |35 100000
BEEHE |35 scow
BRBE | 32 Bt
0 20,000 40,000 60,000 80,000 100,000 0

0 25 50 75 >100

Fig. 5. The distribution of sub-classes, image resolution, and title length in MEP-3M dataset.

New names are manually assigned for those sub-class pairs that
Siabel # 1.00. Some examples of the results are listed in Table. 3.

Some platforms have further finer-grained categories. Therefore,
beyond the class and the sub-class labels, we create finer-grained
subsub-class labels for a total of 13 sub-classes:

‘L (bags), ‘M’ (accessories), ‘“FHLELF (mobile phone accessories), ‘% % (men’s
clothing), ‘%% (women’s clothing), ‘AKX’ (underwear), ‘FT4R 44" (outdoor equipment),
KHEY (fruit), ‘S (meat), WK (toned drinks), ‘Fgdt+6% (dry foods), ‘ALK #%
(diapers), and ‘Wi EKE" (bottle nipples).

For the sub-class that does not have finer-grained subsub-classes,

the subsub_class_id and subsub_class_name are set to
'FLASE'.

Each level of labels are provided in both Chinese and English.
The entire dataset takes around 76 GB storage. See Fig 5 for the
distribution of sub-classes, image resolution, and title length in
MEP-3M dataset.

4. Product classification

4.1. Data and task

3.3. Dataset statistics

Product classification is the most straightforward task on MEP-
3M dataset. The product classification task can be done on all three
levels of label in MEP-3M. We defined the second level (599-way)
as the predominant setting. Since MEP-3M provides multi-modal
data, the model can also be trained with different modalities of
data or their combination. Specifically, we defined image-only set-
ting, text-only setting, and multi-modal setting, where the model
can respectively access image data only, text data only, or both of
them. The three levels of labels and three settings of data modal-
ity result in nine classification tasks. In the following, we first con-
duct comparative experiments on the predominant task (the sec-

Most images are in a 220x220 resolution, and the others are
in 64x50, 75x75, 60x60, 54x54, 100x75, 800x800 and 219x220
resolution. A total of 2,908,596 (96.53%) of the images are in .jpg
format, while the other 104,363 (3.46%) images are in .png format.

The text of title is in simplified Chinese. The length of
title ranges from 2 characters to more than 100 characters.
The average length of it is 49. In total, the dataset consists of
156,069,329 characters in title overall. OCR text is detected in a
total of 1,404,146 images (46.6% of all products). Fig. 6 shows the
statistics of character frequency in title and OCR text.
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Fig. 6. Character frequency analysis of text from title and OCR. Comparatively, text in the title is more informative, while text OCR contains more promotional-related

information.

Table 4

The classification accuracies of different baseline methods on MEP-3M.
Model Data Top-1 Top-5 AP F1-score
VGG-19 image-only 76.36%  91.77% 03966  0.7275
Inception-v3 image-only 79.48% 94.27% 0.6326 0.7493
LSTM text-only 89.13%  98.33%  0.9200 0.8796
Bi-LSTM text-only 90.68%  98.70%  0.9309  0.8931
VGG+BIiLSTM  multi-modal  91.07% 98.84% 0.9354  0.8540
TFN multi-modal  90.70%  98.74%  0.9289  0.8899
LMF multi-modal  89.22%  98.19%  0.8924  0.9125

ond level) to demonstrate the effectiveness of multi-modal data,
then compare the difficulty of the three levels.

4.2. Baseline results

For the classification on the second level, we test both single
modal models (i.e., LSTM for text-only, VGG-19 [42] and Inception-
V3 [47] for image only) and multi-modal models (Low-rank Multi-
modal Fusion (LMF) [34] and Tensor Fusion Network (TFN) [61]).
For LSTM-based text-only model, we first remove meaningless
characters from texts with regular expressions and then imple-
ment Chinese word segmentation. Word2vec model from the gen-
sim toolkit is used to obtain word embedding. The representation
is further passed to the LSTM or BiLSTM model for classification.
We divide the full dataset randomly into training and test set at a
ratio of 8:2. The model is implemented by TensorFlow, using an In-
tel i5-9400F CPU and NVIDIA TITAN RTX GPU. All experiments are
trained with Adam optimizer, and the initial learning rate is set to
le-3 and decreases every 2 epochs at a rate of 0.5. The batch size
is 64.

The testing accuracies, average precision score (AP) and F1-
score of baseline models are shown in Table 4. We can see that
the multi-modal methods (VGG+BiLSTM, LMF [34] and TFN [61])
achieved better results than single-modal methods, which demon-
strates the advantage of multi-modal product classification over
single-modal-based methods. The results also show that the text-
based classification is much easier than the image-based one and
reveal the potential of utilizing text information as weak annota-
tions to improve the vision models.

Table 5
The classification accuracies of different level of class la-
bels on MEP-3M.

Model First-level ~ Second-level  Third-level
ResNet 88.81% 71.37% 71.15%
BERT 98.76% 94.29% 94.10%

Then we compare the classification tasks on different label
level. For image-only setting, we use a ResNet-50 as feature ex-
tractor. For text-only setting, we use a pre-trained BERT model. For
each of them, we use two 4096-d fully connected layers as the
classifier. The results are shown in Table 5. It can be seen that first
level classification is much easier than the second and the third
level. Comparing the results of ResNet and BERT, we find a large
performance gap between them. It indicates that image-only clas-
sification task is much harder than text-based ones. It is partially
due to the fact that the images of MEP-3M are fine-grained. We
select the nearest neighbors of several images to demonstrate this
point. The clustering is done by calculating the pixel-wise distance.
As shown in Fig. 8, many images are visually similar but belong to
different classes.

Except the fine-grained nature of MEP-3M, the lone-tailed dis-
tribution may also brings additional challenge. To verify this point,
we evaluate the per-class accuracy of the ResNet trained on third-
level labels, and analyze the relationship between the number of
each class’s training sample and its corresponding testing accuracy.
The results are shown in Fig. 8. We find that with the number of
training sample decrease, the lower bound of per-class classifica-
tion accuracy drop sharply. The lowest accuracy approaches 14.29%.
On the opposite direction, we find that 6000+ training samples
could yield satisfying per-class accuracy.

5. Hierarchical product classification
5.1. Data and task
Hierarchical classification [25,51], or coarse-and-fine learning

[9], is an active research area in the machine learning field [49,57].
It shares many similarities with fine-grained learning, such as they
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Fig. 9. Illustration of the hierarchical structure of MEP-3M. Note that this fig-
ure only shows about 10% of the entire MEP-3M.

both require a model to recognize the subtle differences between
classes. The key difference between them lies in the fact that fine-
grained learning usually has only one level of labels, but hierarchi-
cal classification covers multiple levels of labels. One hierarchical
model should recognize both coarse classes and finer sub-classes
at the same time. One distinguished feature of our MEP-3M dataset
is that it is hierarchically categorized. As shown in Fig. 9, there
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are three levels of the label in MEP-3M, including 14 classes (first
level), 599 sub-classes (second level), and 13 sub-classes have fur-
ther subsub-classes (third level). These hierarchical labels MEP-3M
make it a suitable dataset for experiments of hierarchical classifi-
cation algorithms. Compared to the CIFAR-100 dataset or ImageNet
dataset that has been commonly used by well-known hierarchical
classification models, our MEP-3M dataset provides three levels of
labels, E-commerce product domain images, and more importantly,
multi-modal data. Based on the characteristics of its hierarchical
annotations, we point out two possible tasks on MEP-3M for hier-
archical classification studies:

o Weakly-supervised hierarchical classification. Current hierar-
chical classification tasks can be divided into two types. The
first is all samples are labeled with both coarse-and-fine la-
bels, while in the second type only part of the samples has
fine labels. Since coarse labels are easier to collect than fine
labels, the second type is much closer to a real-world scenario.
Our MEP-3M falls in this type. For example, one E-commerce
platform may end up with “fruits” class, while the other may
further classify the “fruits” into “apples”,“bananas”, “pitches”,
etc. In this case, the samples from the first platform have only
coarse labels, they can be served as weak supervision that as-
sist finer-grained classes learning [24,29,40].

Multi-modal hierarchical classification. It should be noticed
that most existing hierarchical classification studies are in
single-modal settings. One likely reason is that there are
not many multi-modal hierarchical classification datasets. With
MEP-3M, we propose a novel learning task: multi-modal hi-
erarchical classification. Compared to traditional hierarchical
classification, multi-modal setting brings additional challenge
that the model should simultaneously learn different granular-
ity within (e.g., “fruits” v.s. “apples”, “bananas”, “pitches”) and
across modalities (e.g., a samples of “apples” class may contain
text like “fresh fruit”).

” oW

5.2. Baseline results

We present three baseline approaches that aim to make full use
of the hierarchical annotations of MEP-3M. Specifically, our goal is
to improve classification accuracy with finer-grained information.
For example, for the baseline of first-level classification on MEP-
3M in Section 4 (Table 5), only the corresponding 14-way labels
are available. Such results might be further improved when more
information is available (i.e. with 599-way labels and 688-way la-
bels). Inspired by Guo et al. [18], we design three baseline mod-
els. Their network structures are shown in Fig. 10. We combine
them with the three baselines in Section 4 by attaching them to
the features extracted by ResNet, BERT, and ResNet+BERT. The fea-
tures are passed to a series of dense layers with skip connections.
Three classifiers corresponding to the three levels in the category
hierarchy are connected with dense layers in different orders. The
network is trained with a joint loss composed of cross-entropy
losses of the three classifiers. During training, the backbone net-
work (ResNet/BERT) is fixed as in [18].

The results are shown in Table 6. We note accuracy improve-
ments in parentheses. For most settings, the classification accura-
cies got improved, which shows the effectiveness of hierarchical in-
formation. As shown in the "Average improvement” row in Table 6,
all of the three hierarchical classification algorithms bring improve-
ments on average, and the “coarse to fine” setting with +0.71%
improvement is the best one by comparison. In addition, the re-
sults also illustrate that hierarchical information is more beneficial
to image model (ResNet) compared to text model (BERT). The best
improvement (+1.20%) in this table is introduced by the image-only
coarse to fine model, and both of the remaining hierarchical clas-
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Table 6
Hierarchical classification results.

Model Baseline coarse to fine fine to coarse coarse and fine

ResNet 88.81% 90.01% (+1.20%) 89.50% (+0.69%) 89.73% (+0.92%)
BERT 98.76% 98.58% (- 0.18%) 98.61% (- 0.15%) 98.61% (- 0.15%)
ResNet + BERT 97.70% 98.81% (+1.11%) 98.81% (+1.11%) 98.81% (+1.11%)

Average improvement - +0.71%

+0.55% +0.63%

sification algorithms on ResNet also yield improvements (+0.69%
and +0.92%). However, for BERT-based models, the hierarchical in-
formation fails to improve the performance. This may be due to the
fact that text classification is generally easier than image classifica-
tion and the naive baseline for text classification already performs
very well at 98.76%

6. Fine-grained product classification
6.1. Data and task

In recent years, with deep learning technologies, researchers in
the computer vision community have made remarkable progress
in Fine-Grained Image Analysis (FGIA) tasks [38,53,65]. However,
FGIA still remains an challenging and unsolved problem due to the
small inter-class variation and the large intra-class variation. Our
MEP-3M is collected from several E-commerce platforms. The la-
bel granularity is different across different platforms. On one hand,
this fact brings additional need for label alignment when merge
multi-source data into a single dataset (as described in Section 3).
On the other hand, we can naturally acquire several groups of
high-quality coarse-and-fine label annotations.

Based on this, we select four sub-classes and accordingly build
up four fine-grained subsets from MEP-3M. The selected sub-
classes (may also be named as “meta-classes” or “super-classes”)
include meat, mobile phone accessory, jewelry, and outdoor equip-
ment. The resulting subsets are respectively named as MEP-
outdoors, MEP-meats, MEP-accessories and MEP-jewelries. Among
them, MEP-outdoors is divided into 17 categories including back-
pack, climbing equipment, sleeping bag and so on, and MEP-
meats contains 18 categories including chickens, ducks, fishes, etc.
The MEP-accessories is made up of 7 categories, such as mobile
phone holder, cell phone battery, earphones and so on, and MEP-
jewelries involves 12 categories including diamond, jade, etc. In
average, each category in these datasets has 4000-5000 samples.
Table 7 gives an detailed comparison between presented four MEP-
3M fine-grained subsets and existing fine-grained datasets. Our
datasets enjoy four unique characteristics compared to existing
fine-grained datasets, as listed in the following:
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* Novel meta-class. Existing fine-grained datasets mainly cover
different types of animals (birds [8,50], dogs [26]), plants (flow-
ers [36], vegetable [23], fruits [23]), vehicles (cars [27], planes
[35]). A few of existing datasets involves products, such as
clothes [17], retail products [52], etc. Comparatively, our pre-
sented fine-grained subsets of MEP-3M are with very different
meta-classes. To our best knowledge, there are not any exist-
ing fine-grained image datasets that specifically focus on meat,
mobile phone accessory, jewelry, or outdoor equipment.

» Novel image domain.. The images in most existing fine-grained
datasets are collected in the wild [21] or in a controlled en-
vironment [52], but the images in our fine-grained subsets of
MEP-3M are E-commerce product images, which usually have
cleaner backgrounds and sometimes contain OCR information.
Moreover, although our datasets are not annotated with the
bounding box, it should be noticed that E-commerce product
images are implicitly annotated. The seller (who uploads the
product image) tends to place the product in the center of
the image and adjust it to a proper size. This characteristic
is unique compared with most existing datasets that contains
photos in the wild, and leads to the potential of applying self-
supervised learning technologies

e Multi-modality. Recently, the combination of multi-modal
learning and FGIA attracts much attention [39,44,56]. Most
studies in this direction use the CUB-200-2011 dataset and Ox-
ford Flowers dataset, in which the text modality is collected
by Reed et al. [39].. Specifically, the text is annotated through
Amazon Mechanical Turk (AMT) platform by “non-Master” cer-
tified workers. Our fine-grained subsets differ from theirs in
two aspects. First, the text description of our datasets is in Chi-
nese instead of English. Second, our text description is much
more accurate and informative since it is given by the product
seller. With such text data, the MEP-3M fine-grained subsets
can also be considered as multi-modal fine-grained datasets
with complementary vision-language information and high-
quality text annotations.

o High diversity. As shown in Fig. 11, we sampled some images
from our four fine-grained datasets. Many of the images have
very small inter-class variance (as noted by green dotted box),
and at the same time, the intra-class variance (horizontal axis)
is large. In other words, these fine-grained subsets provide im-
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Table 7

Comparison between our presented MEP-3M fine-grained subsets and widely used fine-grained datasets.
Dataset Meta-class # Images # Categories Modaility
Oxford Flower [36] Flowers 8,189 102 Image/Text (English)
CUB200-2011 [50] Birds 11,788 200 Image/Text (English)
Stanford Dog [26] Dogs 20,580 120 Image
Stanford Car [27] Cars 16,185 196 Image
FGVC Aircraft [35] Aircrafts 10,000 100 Image
Birdsnap [8] Birds 49,829 500 Image
Fru92 [23] Fruits 69,614 92 Image
Veg200 [23] Vegetable 91,117 200 Image
iNat2017 [21] Plants and Animals 859,000 5,089 Image
RPC [52] Retail products 83,739 200 Image
MEP-outdoors Ours Outdoor equipment 82,187 17 Image/Text (Chinese)/OCR
MEP-meats Meats 68,102 18 Image/Text (Chinese)/OCR
MEP-accessories Mobile phone accessories 34,168 7 Image/Text (Chinese)/OCR
MEP-jewleries Jewelries 28,193 12 Image/Text (Chinese)/OCR

Table 8

The classification accuracies of different baseline methods on MEP-3M fine-grained
subsets.

MEP-accessories =~ MEP-jewelries =~ MEP-outdoors = MEP-meats
ResNet  90.95% 64.88% 69.39% 64.76%
BERT 99.27% 100% 93.44% 81.66%

ages with high diversity. In addition, in existing fine-grained
learning datasets, one category normally has only around one
hundred samples. In comparison, MEP-3M fine-grained subsets
have up to several thousand images per category. These im-
ages carry very different patterns and result in a very high
diversity, which brings challenges for visual models. Such di-
versity, combined with other three characteristics as men-
tioned before, will make these fine-grained subsets valuable for
researching.

6.2. Baseline results

We also present baseline results to benchmark MEP-3M fine-
grained subsets. As before, an image-only ResNet and a text-only
BERT are employed to perform fine-grained classification. The re-
sults are shown in Table 8. Similar to the baseline results of MEP-
3M (i.e., Table 4), there is a large gap between the performance of
the image-only model and the text-only model. In addition, we no-
ticed that the baseline performance of the four subsets differs sig-
nificantly from each other. There are mainly two reasons for this.
Firstly, the number of categories varies across the datasets, lead-
ing to varying levels of difficulty in learning a classification model.
Secondly, the samples in the MEP-3M dataset are diverse because
they are collected from different platforms, and the qualities of
samples in different categories and modalities may also be differ-
ent. Based on the results, the four subsets can be described as:
strong image and strong text (MEP-accessories), weak image and
strong text (MEP-jewelries), and weak image and weak text (MEP-
outdoors and MEP-meats). This classification of strong and weak is
not only evident in the experimental results, but can also be seen
in the dataset samples. For example, as shown in Fig. 11, the im-
age samples in the MEP-accessories subset are generally easier to
recognize because different categories have significantly different
visual patterns. As a result, the ResNet-based classification model
achieved a high accuracy (90.95%) on MEP-accessories. In contrast,
in the other three datasets, the ResNet-based model only achieved
accuracies of around 60% to 70% because the images have smaller
inter-class differences (especially for the images in green dotted
boxes in Fig. 11). As for the BERT-based text classification models,
the accuracies in MEP-accessories and MEP-jewelries are very high
(99.27% and 100%) because many product titles contain the exact
class names. However, in MEP-outdoors and MEP-meats, the titles
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are generally shorter and contain more irrelevant information, re-
sulting in lower accuracies.

7. Product representation learning
7.1. Data and task

In this section, we propose another special subset and a practi-
cal usage of MEP-3M. We present MEP-for-RPC: as a pre-training
dataset for the Automatic Checkout (ACO) task. ACO is a novel
computer vision task, which refers to recognize and count prod-
ucts from a given image. ACO has high research value since it has
the potential to reduce human labor amount in the retail industry
[54]. However, such task is particularly challenging since a model
needs to recognize subtle differences between a large number of
products. Moreover, due to the rapid updating of the products, it is
desirable to perform online learning to avoid frequent re-training.
In 2019, Wei et al. [52] introduced a high-quality dataset for the
ACO problem named Retail Product Checkout (RPC) dataset. Com-
pared to previous relevant datasets, RPC has a more clearly defined
ACO task setting. It is also significantly larger and closer to real-
world application scenarios. Existing solutions [30,52,55,59] on RPC
dataset mainly used GAN-based data augmentation [66] to syn-
thesize training images from single-product exemplar images. Al-
though the number of samples can be significantly increased, the
diversity of synthesized training data is limited. As a result, the
robustness and generalization ability of learned feature represen-
tation of an ACO model is limited, which is also undesirable in the
online learning scenario.

Therefore, we propose to use the MEP-3M dataset to improve
the feature for ACO task on RPC. We select a special subset of MEP-
3M named MEP-for-RPC to exclude unrelated samples in MEP-3M.
Specifically, 26 sub-classes in MEP-3M that have semantic overlap
with RPC are selected. Due to difference in granularity, there is a
many-to-many correspondence between RPC dataset and MEP-for-
RPC dataset. For example, as shown in Fig. 12, the “personal hy-
giene” (id=15) in RPC dataset corresponds to four different sub-
classes in MEP-for-RPC, while “candy/choclate” (id=304) in MEP-
for-RPC dataset covers three classes in RPC dataset. Our MEP-for-
RPC dataset has a total of 118,170 different products, which is 500
times larger than the RPC dataset. As a result, as shown in Fig. 12,
the samples in MEP-for-RPC have significantly larger variance than
RPC. Such variance is beneficial for learning robust product repre-
sentation and improving ACO model.

7.2. Baseline results
To demonstrate the superiority of the pre-training on MEP-for-

RPC, we conduct a comparative experiment simulating a real-world
incremental online learning scenario. We first divide the training
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set of RPC into base classes and novel classes. The novel class rep-
resents the newly updated products. From each of 17 meta classes
in RPC dataset we select two products as novel class, and leave
the rest classes as base class. It splits a total of 200 classes in RPC
into 166 base classes and 34 novel classes. We randomly select 10
images for each class as training data. We conduct experiment to
validate the effectiveness of pre-training on MEP-for-RPC. A random

initialized ResNet is firstly trained with 166 base classes only, and
then transferred to classify 200 base + novel classes. The compar-
ison of with pre-training has the same transferring pipeline, ex-
cept the ResNet is initialized with weights pre-trained on MEP-for-
RPC. The results are shown in Table 9. We present the final accu-
racy of all classes (166 base classes + 34 novel classes) and the
accuracy of only the novel class. It can be seen that the represen-

12



E Liu, D. Chen, X. Du et al.

305 ][ Snackfood |—|IH PuffedFood | [ 534 || Liquor
T ——
Wﬁ%@ﬁ\ﬂlﬁﬁl\éenf
- [(320 | Cemneqanddried |5 ][ DriedFruit [(541 ][ tmport drinks

Pattern Recognition 140 (2023) 109519

Health and
medical

560 | ey shmeare |

Alcohol

it iié

318 | Nuts and kernels I—E” Dried Food

[!liT

°?f"f k

ANEE

[[307 | Milk

“ Instant Drink ’ & M gy Mda e
R !Eéi;::

EBEEEE

EEEVE =
| 10 ][ cannedFood J
(EE R
I . . . - rains, oil and
seasonings

lationery for

E l E HI l 537 ” Seasoner

]

students

!&lééH-lllH

Stationery

8 B
HEEER

IBIEI

e s
T TR

Fig. 12. Class correspondence between RPC dataset and MEP-for-RPC dataset.

Table 9
Comparison of MEP-for-RPC pre-training

Pre-training on MEP-for-RPC  Accuracy-all ~ Accuracy-novel
x 59.63% 52.05%
J 64.40% 64.01%

tation learned from MEP-for-RPC pre-training effectively improves
the performance of retail product classification. Moreover, the ac-
curacy of novel class is lower than overall accuracy without pre-
training, while the accuracy-all and accuracy-novel are almost the
same under the pre-training setting. It indicates that the feature
representation learned from MEP-for-RPC is more robust than the
feature learned from RPC only.

8. Conclusion

This paper introduced MEP-3M, a large-scale multi-modal E-
commerce product dataset, which is unique in terms of its large-
scale, multi-modality, hierarchical and fine-grained categorization,
and long-tailed distribution. One of the key strengths of MEP-3M
is its alignment with recent progress in the field of vision-language
research, which makes it a valuable resource for researchers to ex-
plore the challenges and opportunities of multi-modal learning in
the context of E-commerce products. For instance, with its large-
scale data, MEP-3M can serve as a powerful pre-training dataset
for E-commerce vision-language foundation models.

However, the MEP-3M dataset also has several limitations that
need to be considered. First, although the dataset covers 599 fine-
grained product categories, it may still not include all the possi-
ble product categories in the E-commerce domain. The reason is
that the products of E-commerce platforms are constantly updat-
ing, making it difficult to keep all the categories up-to-date. This
can limit the generalizability of the models trained on MEP-3M to
real-world E-commerce scenarios. Second, the data quality of MEP-
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3M may also affect the performance of the models. For example,
some images or textual descriptions may contain noise, which can
negatively impact the learning process.

Despite these limitations of MEP-3M, we believe that it has
the potential to advance the field of vision-language research, and
make a significant impact on E-commerce related research. In the
future, we plan to continuously expand the dataset and improve its
quality by label denoising and image enhancement. Additionally,
we will further extend the MEP-3M dataset to more applications,
such as cross-modal retrieval and product clustering, to meet the
growing needs of the research community. We hope to see more
researchers using MEP-3M to explore new ideas and develop more
advanced models.
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