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A B S T R A C T

Recently, transfer learning has generated promising performance in few-shot classification by pre-training a
backbone network on base classes and then applying it to novel classes. Nevertheless, there lacks a theoretical
analysis on how to reduce the generalization error during the learning process. To fill this gap, we prove that
the classification error bound on novel classes is mainly determined by the base-class generalization error,
given the base-novel domain divergence and the novel-class generalization error produced by an incremental
learner using novel samples. The novel-class generalization error is further decided by the base-class empirical
error and the VC-dimension of the hypothesis space. Based on this theoretical analysis, we propose a Born-
Again Networks under Self-supervised Label Augmentation (BANs-SLA) method to improve the generalization
capability of classifiers. In this method, cross-entropy and supervised contrastive losses are simultaneously used
to minimize the base-class empirical error in the expanded space with SLA. Afterward, BANs are adopted to
transfer the knowledge sequentially across generations, which acts as an effective regularizer to trade-off the
VC-dimension. Extensive experimental results have verified the effectiveness of our method, which establishes
the new state-of-the-art performance on popular few-shot classification benchmark datasets.
1. Introduction

Biologically speaking, humans are innate to easily complete the
recognition of massive natural and daily objects after observing just a
few of samples. In contrast, even the latest advanced machine learning
models like deep convolutional neural networks (CNNs) still heavily
rely on a great quantity of high-quality labeled data to approach
good performance. Thus, they are still struggling in many realistic
scenarios, as annotating a large-scale data is usually very laborious
and expensive. To bridge the significant gap between the CNNs and
human intelligence, few-shot learning (FSL) [1,2] aiming at general-
izing new concepts with a little supervision has rekindled an interest
in many computer vision applications over years, such as image classi-
fication [3], object detection [4], semantic segmentation [5], and so
on. Our work mainly focus on few-shot classification (FSC) [6–10],
which attempts to train a model based on bass classes with sufficient
annotated samples to predict unlabeled samples (query set), assuming
only a few labeled samples (support set) are given per novel class.
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For addressing this challenge issue, the most intuitive method is
to make the machines to have the ability of learning to learn, as
the way meta-learning paradigm has devoted to accumulating meta-
knowledge for fast adaptation to novel classes with few labeled sam-
ples. Roughly speaking, meta-learning-based methods can be broadly
divided into two types of optimization-based [6,11,12] and metric-
based approaches [7,13–15]. Both sets of approaches adopt episodic
training fashion to simulate real test environments. Despite great suc-
cess with meta-learning, very recent studies [16–19] suspected that its
sophisticated episodic training strategy is not the key factor for obtain-
ing beneficial performance. Alternatively, they pre-trained a backbone
network on the whole base dataset and then trained a traditional
classifier for novel classes on the top of it. It is surprisingly that above
transfer-learning paradigm has achieved competitive results compared
with meta-learning. Under the transfer learning umbrella, the key to
settling FSC tasks relies on a good embedding learned from base classes
for the novel classes. Efforts to achieve this goal have been made
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Fig. 1. (a) A learner ℎ ∈  is obtained with abundant base samples, resulting in the base-class generalization error of 𝑒𝑏. (b) The final learner ℎ𝑜 ∈  is derived from a few novel
samples based on ℎ with difference ℎ▵, yielding the generalization error on novel classes of 𝑒𝑛. 𝑒ℎ and 𝑒𝑖 is the novel-classes generalization error respectively with ℎ and ℎ▵. 𝑒𝑛 is
composed of 𝑒ℎ and 𝑒𝑖. And 𝑒ℎ is bounded by 𝑒𝑏 and (𝐷𝑏 , 𝐷𝑛). So, the generalization error bound 𝑒𝑏𝑜𝑢𝑛𝑑 for the novel classes is formulated as: 𝑒𝑏𝑜𝑢𝑛𝑑 = 𝑒𝑏 + (𝐷𝑏 , 𝐷𝑛) + 𝑒𝑖.
from different perspectives, for example, learning a general-purpose
feature extractor with the manifold technique [18], improving model
transferability via expanded margin in loss function [19], and obtaining
invariant features by self-supervised learning [9]. Moreover, the self-
distillation technique [17] is also proven to be able to improve the
performance of FSC. The diversity of the above methods naturally raises
an interesting question: How to enforce a model pre-trained on the base
classes to act well on novel classes? Or alternatively, is there a general
guideline for FSC to obtain good performance on unseen novel classes?

We attempt to answer these questions by conducting a theoretical
study on the generalization error bound of FSC, which unveils the
impact of errors produced in each stage of transfer learning. Fig. 1
summarizes the core idea of our theorem. As shown in Fig. 1(a), a
mapping function ℎ ∈  is learned from the base set with abundant
training samples. In Fig. 1 1(b), the final mapping function ℎ𝑜 ∈ 
is obtained with a few samples of novel classes based on ℎ with
difference ℎ▵. In this case, the generalization error on the novel classes
is composed of the generalization error from both ℎ and ℎ▵. According
to the domain adaptation learning theory [20], the former is bounded
by the generalization error on the base set and the domain divergence
between the base-class and the novel-class. Therefore, the classification
error bound on the novel classes 𝑒𝑏𝑜𝑢𝑛𝑑 is related to: (1) 𝑒b: the base-
class generalization error with ℎ, (2) (𝐷b, 𝐷n): the base-novel domain
divergence, and (3) 𝑒i: the novel-class generalization error with ℎ▵. The
above three terms can be concluded to be the following formula of
𝑒𝑏𝑜𝑢𝑛𝑑 = 𝑒𝑏 +(𝐷𝑏, 𝐷𝑛) + 𝑒𝑖. Decreasing the above three terms leads to a
better FSC classifier for the novel class. Wherein, the pre-training stage
is responsible for the first term, which is determined by the empirical
error and the VC-dimension of the hypothesis space according to the
statistical learning theory [21]. However, current transfer learning
based FSC methods [17–19] mainly focused on leveraging various
regularization techniques to avoid over-fitting the base set, ignoring
the empirical error on the base set which is also a vital term for the
final error bound. Moreover, these methods usually suffer from tuning
many parameters to balance loss terms in the final loss function.

To solve the above problems, we instantiate a new algorithm named
Born Again Networks under Self-supervised Label Augmentation (BANs-
SLA) according to the proposed theorem. BANs-SLA is designed to
directly minimize the empirical error on the base set by only tuning the
weight of the Kullback–Leibler (KL) loss term. In specific, SLA [22] is
exploited to expand the original label space. This can avoid the conflict
between the self-supervised and the originally supervised tasks [23],
whilst controlling the VC-dimension of the learning model implicitly by
2

manipulating the data complexity with label augmentation. With SLA,
the Cross-Entropy (CE) and Supervised Contrastive (SC) losses [24] are
simultaneously used to minimize the empirical error. We then adopt an
effective regularization strategy of BANs [25] to transfer the knowledge
sequentially across generations with the aim of further decreasing the
generalization error. In summary, the contributions of this paper are:

• To our knowledge, this is the first theoretical study on FSC in the
context of the transfer learning paradigm. To this end, we propose
a generalization error bound theorem to guide FSC.

• Following our theorem, we propose a Born-Again Networks under
Self-supervised Label Augmentation (BANs-SLA) method for FSC,
in which the joint learning with the CE and SC losses targets
minimizing the empirical error, while the strategies of SLA and
BANs trade-off the VC-dimension of the hypothesis space.

• We conduct extensive experiments on multiple benchmarks to
demonstrate the effectiveness of the BANs-SLA method, which has
experimentally validated the proposed theorem.

2. Related work

2.1. Few-shot classification

Generally, the goal of FSC is to endow AI systems with the ability of
generalizing new concepts under low-data regime. To this end, meta-
learning seeks to accumulate meta-knowledge for fast adaptation by or-
ganizing the training into a series of episodes. According to knowledge
type, it is totally grouped into two categories of optimization-based and
metric-based methods. The former performs an explicit bi-level opti-
mization process to possess a meta-learner for fast optimization within
a few steps. The seminal works including MAML [6] and its variant [26]
tried to learn initialization parameters to provide a good start point
for unseen tasks. Except for the initialization parameters, Meta-Learner
LSTM [27] focused on learning the updating rules of an optimizer.
For further enhancing the generalization, recent works of this type
like MetaOptNet [28] and MeTAL [29] respectively explored hinge loss
and task-adaptive loss to substitute the common CE loss in the inner-
loop optimization. Compared with the first type, metric-learning based
approaches have shown to be more prominent in settling FSC with
attractive simplicity and effectiveness. This type of approaches follow
the idea of jointly learning a good feature and metric to differentiate
samples per class. The earlier well-known models including Matching
Networks [30], Prototypical Networks [7] and Relational Networks [8]
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have been successively proposed to form the generic FSC framework.
Afterwards, many literature improved upon them mainly from two re-
spects, i.e. attaining a powerful feature extractor and designing a richer
similarity metric. For example, RENet [31], MFS [32] and TPMN [33]
resorted to attention mechanisms to capture distinctive features, while
DeepEMD [34], DAN [35] and HGNN [36] respectively leveraged
Wasserstein distance, dynamic filter and graphical model to calculate
similarity based on local feature descriptors.

Recently, a handful of works cast questioning the efficacy of the
episodic training strategy, and forewent such practice with performing
training on the whole base dataset instead. The early influence work ap-
peared in [16], where Baseline and Baseline++ pre-trained CNNs with a
linear or cosine classifier from scratch using CE loss and then fine-tuned
the classifier weights for novel classes. Evidently, this kind of methods
follow transfer-learning paradigm, which largely hinge on training a
good feature extractor. For this, Neg-Cosine [19] and S2M2 [18] re-
spectively employed negative-margin softmax loss and manifold mixup
to learn generalization feature representations. Besides, as our method
is most related to many works using self-supervised learning and knowl-
edge distillation to enhance feature representations, we will review
them comprehensively in Sections 2.2 and 2.3. Moreover, as the classi-
fier used in pre-training is thrown away, current methods usually reuse
a traditional classifier to serve for the novel classes. For example, DC-
LR [37] generated more features according to a calibrated Gaussian
distribution to train a logistic regression (LR) classifier to predict query
samples. CCF [38] generated category-correlated features to train linear
classifier for novel classes. DeepBDC [39] inserted a BDC module to
enhance feature representation of backbone network and also leveraged
LR to classify novel classes. The recent SGI [40] designed an improved
convolution structure named Self-Guided Information Convolution to
extract discriminative features. Although various methods have con-
stantly refreshed the FSC performance, it still lacks of a rule to direct
pre-training.

2.2. Self-supervised learning

Recent years have witnessed a rapid development of self-supervised
learning that aims to learn generalized feature representations without
any label by elaborately designing a set of proxy tasks [41]. More
recently, several studies [42,43] investigated the underlying mecha-
nisms of self-supervised learning from various angles. Remarkably, [43]
combined self-supervised learning and supervised learning to get better
classification performance. In line with the above studies, FSC can be
done by a linear combination of self-supervised learning and supervised
learning models under either meta-learning or transfer learning setting.
For example, IEPT [44] and CC+rot [45] adopted the meta-learning to
introduce a rotation prediction task to enhance the transferability of the
backbone network, while CSIV [9] introduced rotation prediction and
instance discrimination as auxiliary tasks to improve the generalization
of features under the umbrella of transfer learning. However, [23]
suggested that the direct combination of two learning paradigms may
lead to conflicts between tasks. To circumvent this problem, [22]
proposed a Self-supervised Label Augmentation (SLA) method to learn
a single unified task with respect to the joint distribution of the original
and self-supervised labels. On this foundation, we propose to simultane-
ously use cross-entropy and supervised contrastive losses to implement
this unified classification task more effectively.

2.3. Knowledge distillation

Knowledge distillation has recently been adopted for model com-
pression by learning a small student network from a large teacher
network with knowledge transfer. In the absence of a high-quality
teacher network, self-distillation [46] and co-distillation [47] were
proposed for knowledge transfer in FSC. RFS [17] and SKD [48] used
the born-again strategy to sequentially transfer the knowledge through
3

multiple generations, differing in the way on how to train a good
primary model. PAL [49] optimized a teacher network by using the su-
pervised contrastive loss and forcing the student network to align their
logit and feature to the teacher network. BML [50] leveraged mutual
learning between the transfer learning based and meta-learning based
methods. Unlike these methods, our method employs self-distillation
for FSC under SLA.

3. The proposed method

3.1. Theory foundation

Under the transfer learning based FSC setting, an available dataset
𝐷 is divided into three disjoint sets of the base set, validation set and
novel set. We respectively denote the base set and the validation set as
𝐷𝑏 and 𝐷𝑣𝑎𝑙. The novel set is organized into a series of episodes, and
we denote the subset as 𝐷𝑛 in each episode, which is composed of 𝑁
classes with several 𝐾 labeled samples. As discussed in the Introduction
Section, transfer learning based methods aim to pre-train a backbone
network on 𝐷𝑏 with validation on 𝐷𝑣𝑎𝑙 for dealing with FSC tasks on
𝐷𝑛. An interesting question here is: how to fully exploit 𝐷𝑏 to obtain good
performance on 𝐷𝑛? We attempt to answer this question by investigating
the underlying mechanism behind the transfer learning from the view
of the generalization error bound.

For simplicity, we first make some basic definitions in the case
of binary classification (i.e., 𝑁 = 2). Please note that our theory
can be naturally extended to multi-class classification (i.e., 𝑁 > 2).
ollowing [20], two special domains of base classes and novel classes
re considered in our work, denoted as {𝐷𝑏, 𝑓𝑏} and {𝐷𝑛, 𝑓𝑛}, wherein
𝑏 and 𝑓𝑛 respectively represents the label function of 𝐷𝑏 and 𝐷𝑛. The

size of the labeled samples on 𝐷𝑏 and 𝐷𝑛 is 𝐿 and 𝐾, respectively. Let
be a hypothesis space, and a particular mapping function ℎ ∈  is

earned using the base set. In the novel domain, the mapping function
𝑜 ∈  is learned from ℎ with difference ℎ▵ using the novel samples.
hen the expected error with ℎ𝑜 on 𝐷𝑛 is approximated as:

𝑛(ℎ𝑜) ≈ 𝑒𝑛(ℎ) + 𝑒𝑛(ℎ▵). (1)

hen the expected error with ℎ and ℎ▵ respectively on 𝐷𝑏 and 𝐷𝑛 are:

𝑏(ℎ) = 𝑒𝐷𝑏
(ℎ, 𝑓𝑏) = 𝐸𝑥∈𝐷𝑏

[|
|

ℎ(𝑥) − 𝑓𝑏(𝑥)||],

𝑛(ℎ▵) = 𝑒𝐷𝑛
(ℎ▵, 𝑓𝑛) = 𝐸𝑥∈𝐷𝑛

[|
|

ℎ▵(𝑥) − 𝑓𝑛(𝑥)||].
(2)

e assume that there exists a significant domain shift between the base
nd novel classes in the FSC task. Thus, we use the variation [20] to
easure the divergence between the distributions between 𝐷𝑏 and 𝐷𝑛:

(𝐷𝑏, 𝐷𝑛) = 2 sup
𝐵∈

|

|

|

𝑃𝑟𝐷𝑏
(𝐵) − 𝑃𝑟𝐷𝑛

(𝐵)||
|

, (3)

here  is a subset of the union of 𝐷𝑏 and 𝐷𝑛. 𝑃𝑟(𝐵) represents the
robability of set 𝐵.

heorem 1 (FSC Generalization Error Bound). Let  be a hypothesis
pace, and 𝑣 be the Vapnik–Chervonenkis (VC) dimension of . For every
𝑜, ℎ, ℎ▵ ∈  and 𝜂 ∈ [0, 1], the expected error bound on 𝐷𝑛 holds the
ollowing relationship with probability at least 1-𝜂:

𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) +

√

𝑣(𝑙𝑛 2𝐿
𝑣 + 1) − 𝑙𝑛 𝜂

4
𝐿

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
generalization error on 𝐷𝑏 with ℎ

+ (𝐷𝑏, 𝐷𝑛)
⏟⏞⏞⏟⏞⏞⏟

𝐷𝑏 −𝐷𝑛 divergence

+

𝑒𝑛(ℎ▵) +

√

𝑣(𝑙𝑛 2𝐾
𝑣 + 1) − 𝑙𝑛 𝜂

4
𝐾

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
generalization error on 𝐷𝑛 with ℎ▵

+𝜆, 𝐿 ≫ 𝐾,

where 𝐿 is the size of labeled samples on 𝐷𝑏, 𝐾 is the size of labeled samples
on 𝐷𝑛, 𝑒𝑏(ℎ) is the empirical error on 𝐷𝑏, 𝑒𝑛(ℎ▵) is the empirical error on
𝐷 , and 𝜆 is a constant.
𝑛
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Fig. 2. An overview of the proposed framework. It firstly expands the label space of base set 𝐷𝑏 with Self-supervised Label Augmentation (SLA) and then undertakes sequential
knowledge distillation across different generations (i.e., Generation 0, Generation 1, . . . , Generation 𝑡+1) with Born-Again Networks (BANs). The student network in the last
generation is deployed to perform few-shot evaluations.
𝑒

The proof is provided in the Supplementary Material.

Remark 1. Theorem 1 tells the error bound on 𝐷𝑛 is determined by
three terms: (1) the generalization error on 𝐷𝑏 with ℎ, (2) the gener-
alization error on 𝐷𝑛 with ℎ▵, and (3) the domain divergence between
𝐷𝑏 and 𝐷𝑛. Therefore, the basic rule to guide FSC is to minimize the
above three terms, so that the main objective of FSC (i.e., decreasing
𝑒𝑛(ℎ𝑜)) can be accomplished. Under the transfer learning based FSC
setting, the pre-training process is mainly responsible for the first term
(minimizing 𝑒𝑏(ℎ)), given the other two terms. This can well explain
why various regularization techniques discussed in the Introduction
Section are effective, i.e., they lower the generalization error on 𝐷𝑏 via
obtaining robust features.

3.2. Born-again networks under self-supervised label augmentation

3.2.1. Overview
Our method mainly focus on 𝑒𝑏(ℎ) in Theorem 1, which is deter-

mined by both 𝑒 (ℎ) and 𝑣 of the hypothesis space. Accordingly, a
4

𝑏

powerful FSC model can be obtained by selecting the most suitable
techniques to simultaneously focus on 𝑒𝑏(ℎ) and 𝑣. For the first term
̂𝑏(ℎ), existing methods mainly learn a classification hyperplane by the
Cross-Entropy (CE) loss function. Here we further construct a hyper-
sphere by employing the Supervised Contrastive (SC) loss function to
refine the classification boundary. For the second term 𝑣, we propose
an algorithm named Born-Again Networks under Self-supervised Label
Augmentation (BANs-SLA), in which iterative Knowledge Distillation
(KD) and transformation-based training set expansion serve as strong
regularizations to trade-off 𝑣 of the learning model. An overview of our
method is shown in Fig. 2, and a flow description of BANs-SLA is given
in Algorithm 1. In our learning model, the image processing module
denoted as 𝑇 (⋅) performs SLA, which transforms the images and re-
annotates them with the newly augmented class labels. The backbone
network is denoted as 𝐵𝜃 (⋅) parameterized by 𝜃, which maps images
into a 𝑑-dimensional feature space. The linear classier is denoted as
𝐶𝑤 (⋅) with parameter matrix 𝑊 ∈ ℛ𝑑×𝑀𝐶 , which classifies the images
and their transformations into one of the augmented categories. The
projector is denoted as 𝑃 ⋅ with parameter matrix 𝐻 ∈ ℛ𝑑×𝑄 being
ℎ ( )
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used to project the image feature into a 𝑄-dimensional hypersphere
space.

3.2.2. Primitive training with self-supervised label augmentation
During the primitive training in Generation 0, the learning model is

denoted to be 𝐼0 = {𝐵0
𝜃 , 𝐶

0
𝑤, 𝑃

0
ℎ }. Given a batch of 𝐿 images randomly

sampled from 𝐷𝑏, let 𝑥𝑖 be any image, 𝑦𝑖 ∈ {1, 2,… , 𝐶} be its original
label, where 𝐶 is the total number of base classes. 𝑇 (⋅) applies 𝑀 kinds
of transformation to each image, resulting in 𝑀𝐿 image samples. In the
meantime, the label space has also been expanded by 𝑀 times, i.e., the
label of 𝑥𝑖 turns to be 𝑦̂𝑖 ∈ {1, 2,… ,𝑀𝐶} . Feed 𝑥𝑖 into 𝐵0

𝜃 to produce
a 𝑑-dimensional feature, which is formulated as 𝑧0𝑖 = 𝐵0

𝜃 (𝑥𝑖) ∈ ℛ𝑑 .
The features then go through the linear classier and its corresponding
softmax layer to output the predicted probability, of which the 𝑗th
component can be written as:

𝑃 0
𝑖𝑗 = 𝜎

(

𝐶0
𝑤
(

𝑧0𝑖
))

=
𝑒𝑥𝑝(𝑧0𝑖

𝑇𝑤𝑗 )
∑𝑀𝐶

𝑗=1 𝑒𝑥𝑝(𝑧0𝑖
𝑇𝑤𝑗 )

, (4)

where 𝜎 is the softmax function, 𝑤𝑗 ∈ ℛ𝑑 is the 𝑗th classifica-
tion weight vector of parameter matrix 𝑊 0 ∈ ℛ𝑑×𝑀𝐶 . Then the
cross-entropy classification loss under SLA is:

𝐿0
𝐶𝐸

(

𝜃0,𝑊 0) = −
𝑀𝐿
∑

𝑖=1

𝑀𝐶
∑

𝑗=1
𝑦̂𝑖𝑗 𝑙𝑜𝑔𝑝

0
𝑖𝑗 , (5)

where 𝑦̂𝑖𝑗 is the 𝑗th component of label 𝑦̂𝑖.
Additionally, the image feature 𝑧0𝑖 is also fed into the projector to

output a 𝑄-dimensional normalized feature 𝑢0𝑖 ∈ ℛ𝑄, which is written
as:

𝑢0𝑖 =
‖

‖

‖

𝑃 0
ℎ (𝑧

0
𝑖 )
‖

‖

‖

= ‖

‖

‖

𝑧0𝑖
𝑇𝐻0‖

‖

‖

, (6)

here 𝐻0 ∈ ℛ𝑑×𝑄 is the parameter matrix. Assume the whole set of
amples in the given batch consist of a set of 𝐴

(

𝑢0𝑖
)

. Let 𝑢0𝑖 be an anchor
oint to index all the positive samples that have the same augmented
abel with it. The positive samples construct the set of 𝑃

(

𝑢0𝑖
)

. Then the
upervised contrastive loss is adopted to pull the samples of the same
lass together while pushing apart samples from different classes in the
ugmented label space, as follows:

0
𝑆𝐶 (𝜃

0,𝐻0) =
∑

𝑖∈𝐴(𝑢0𝑖 )

−𝑙𝑜𝑔{ 1
|𝑃 (𝑢0𝑖 )|

∑

𝑝∈𝑃 (𝑢0𝑖 )

𝑒𝑥𝑝(𝑢0𝑖 ⋅ 𝑢
0
𝑝∕𝜏)

∑

𝑎∈𝐴(𝑢0𝑖 )
𝑒𝑥𝑝(𝑢0𝑎 ⋅ 𝑢0𝑝∕𝜏)

},
(7)

where 𝜏 is a scalar temperature parameter, |𝑃 (𝑢0𝑖 )| is the cardinality of
𝑃
(

𝑢0𝑖
)

, 𝑢0𝑝 is the 𝑝th sample from 𝑃 (𝑢0𝑖 ), 𝑢
0
𝑎 is the 𝑎th sample from 𝐴

(

𝑢0𝑖
)

.
Then the overall loss function for primitive training with SLA is :

𝐿𝐺𝑒𝑛0
(

𝜃0,𝑊 0,𝐻0) = 𝐿0
𝐶𝐸

(

𝜃0,𝑊 0) + 𝛼𝐿0
𝑆𝐶

(

𝜃0,𝐻0). (8)

As CE and SC have the identical function of minimizing the empirical
error, 𝛼 is empirically set to be 1. Gradient descent is used to update the
parameters to approach the teacher network for the first generation.

3.2.3. Born-again networks
The next task is to depict the learning process from the 𝑡th (𝑡 > 0)

generation to (𝑡 + 1) th generation. To this end, the student network
approximates the joint distribution of the original and self-supervised
labels using CE and SC losses, whilst learning information from the
teacher network of the former generation. For convenience, we denote
the learning model of the teacher network and the student network as
𝐼𝑡 = {𝐵𝑡

𝜃 , 𝐶
𝑡
𝑤, 𝑃

𝑡
ℎ} and 𝐼𝑡+1 = {𝐵𝑡+1

𝜃 , 𝐶 𝑡+1
𝑤 , 𝑃 𝑡+1

ℎ }.
Given a batch of 𝐿 images randomly sampled from 𝐷𝑏, any image 𝑥𝑖

after SLA is simultaneously fed into the teacher network and the student
network. The output features from each backbone network are defined
5

Algorithm 1: Born-Again Networks under Self-supervised Label
Augmentation

Input: Base dataset 𝐷𝑏 = {(𝑥𝑖, 𝑦𝑖)}𝐿𝑖=1, augmentation module
𝑇 (⋅), backbone network 𝐵𝜃 (⋅), linear classifier 𝐶𝑤 (⋅),
projector 𝑃ℎ (⋅)

Output: A well-trained backbone network
Gen0: Primitive Training with SLA
for numbers of training epochs do

Sample a mini-batch with any image of
(

𝑥𝑖, 𝑦𝑖
)

;
Feed 𝑥𝑖 into 𝑇 (⋅) and 𝐵0

𝜃 to obtain feature𝑧0𝑖 ;
Pass 𝑧0𝑖 through 𝐶0

𝑤 to get the output probability;
Pass 𝑧0𝑖 through 𝑃 0

ℎ to get the projection feature;
Calculate optimization loss via Eq. (8);
Update parameters of 𝜃0, 𝑊 0, 𝐻0 using SGD;

end
Gen(t+1): Bon-Again Networks (BANs)
for numbers of training epochs do

Sample a mini-batch with any image of (𝑥𝑖, 𝑦𝑖);
Feed 𝑥𝑖 into 𝐼 𝑡 and 𝐼 𝑡+1 to obtain features and probability
output;
Calculate KL loss between 𝐼 𝑡 and 𝐼 𝑡+1;
Compute overall loss for 𝐼 𝑡+1 via Eq. (12);
Update parameters 𝜃𝑡+1, 𝑊 𝑡+1, 𝐻 𝑡+1 using SGD for 𝐼 𝑡+1;

end

as 𝑧𝑡𝑖 = 𝐵𝑡
𝜃
(

𝑥𝑖
)

∈ ℛ𝑑 and 𝑧𝑡+1𝑖 = 𝐵𝑡+1
𝜃

(

𝑥𝑖
)

∈ ℛ𝑑 . Then the features
pass through each classifier to output prediction probability 𝑝𝑡

(

𝑥𝑖
)

=
𝜎
(

𝐶 𝑡
𝑤
(

𝑧𝑡𝑖
))

and 𝑝𝑡+1
(

𝑥𝑖
)

= 𝜎
(

𝐶 𝑡+1
𝑤

(

𝑧𝑡+1𝑖
))

. At present, the optimization
function for the student network of the (𝑡 + 1)th generation with CE loss
is:

𝐿𝑡+1
𝐶𝐸

(

𝜃𝑡+1,𝑊 𝑡+1) = −
𝑀𝐿
∑

𝑖=1

𝑀𝐶
∑

𝑗=1
𝑦̂𝑖𝑗 𝑙𝑜𝑔𝑝

𝑡+1 (𝑥𝑖
)

. (9)

The feature from the projector of the student network is 𝑢𝑡+1𝑖 =
𝑝𝑡+1ℎ (𝑧𝑡+1𝑖 ). Similar to the primitive training in the former part, let 𝑢𝑡+1𝑖
be an anchor point to define its whole set of samples 𝐴

(

𝑢𝑡+1𝑖
)

and let
the positive sample set to be 𝑃

(

𝑢𝑡+1𝑖
)

. Then the SC loss in the (𝑡 + 1)th
generation is :

𝐿𝑡+1
𝑆𝐶 (𝜃

𝑡+1,𝐻 𝑡+1) =
∑

𝑖∈𝐴(𝑢𝑡+1𝑖 )

−𝑙𝑜𝑔{ 1
|𝑃 (𝑢𝑡+1𝑖 )|

∑

𝑝∈𝑃 (𝑢𝑡+1𝑖 )

𝑒𝑥𝑝(𝑢𝑡+1𝑖 ⋅ 𝑢𝑡+1𝑝 ∕𝜏)
∑

𝑎∈𝐴(𝑢𝑡+1𝑖 ) 𝑒𝑥𝑝(𝑢
𝑡+1
𝑎 ⋅ 𝑢𝑡+1𝑝 ∕𝜏)

},
(10)

here 𝜏 is a scalar temperature parameter, |𝑃 (𝑢𝑡+1𝑖 )| is the cardinality of
(

𝑢𝑡+1𝑖
)

, 𝑢𝑡+1𝑝 is the 𝑝th sample from 𝑃 (𝑢𝑡+1𝑖 ), and 𝑢𝑡+1𝑎 is the 𝑎th sample
rom 𝐴

(

𝑢𝑡+1𝑖
)

.
During the process of knowledge distillation, the student network

mainly assimilates softened output knowledge from the teacher net-
work. Here, the Kullback–Leibler (KL) divergence of the prediction
probability is chosen to measure the output information. The KL dis-
tance from the teacher network to the student network is computed as:

𝐷𝑡+1
𝐾𝐿

(

𝜃𝑡+1,𝑊 𝑡+1) =
𝑀𝐿
∑

𝑖=1
𝑝𝑡+1(𝑥𝑖)

𝑝𝑡+1(𝑥𝑖)
𝑝𝑡(𝑥𝑖)∕𝜖

, (11)

here 𝜖 is a hyper-parameter of temperature. Then the final loss
unction for optimizing the student network in the (𝑡 + 1)th generation
s formulated as:

𝐺𝑒𝑛𝑡+1
(

𝜃𝑡+1,𝑊 𝑡+1,𝐻 𝑡+1) = 𝐿𝑡+1
𝐶𝐸

(

𝜃𝑡+1,𝑊 𝑡+1)+

𝛼𝐿𝑡+1
𝑆𝐶 (𝜃

𝑡+1,𝐻 𝑡+1) + 𝛽𝐷𝑡+1
𝐾𝐿

(

𝜃𝑡+1,𝑊 𝑡+1),
(12)

where 𝛽 is the weight of the KL loss term to be tuned.
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Table 1
Test accuracy (%) of each component of our method under 5-way 1-shot and 5-shot tasks on benchmark datasets.

Method Backbone miniImageNet CIFAR-FS CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Gen0_CE ResNet12 67.37 ± 0.42 84.36 ± 0.28 73.96 ± 0.46 88.18 ± 0.31 78.26 ± 0.42 92.00 ± 0.20
Gen0_SC ResNet12 65.34 ± 0.43 81.16 ± 0.32 69.85 ± 0.47 82.40 ± 0.36 65.61 ± 0.49 86.40 ± 0.20
Gen0_CE+SC ResNet12 69.05 ± 0.43 84.87 ± 0.29 77.45 ± 0.45 88.64 ± 0.33 80.30 ± 0.42 92.38 ± 0.20
Gen1 ResNet12 70.40 ± 0.44 85.31 ± 0.27 77.98 ± 0.45 89.78 ± 0.31 83.17 ± 0.40 93.75 ± 0.19
Table 2
Test accuracy (%) of our method with and without SLA under 5-way 1-shot and 5-shot tasks on benchmark datasets.

SLA Backbone miniImageNet CIFAR-FS CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

× ResNet12 63.34 ± 0.46 80.28 ± 0.32 74.16 ± 0.50 85.16 ± 0.35 79.17 ± 0.47 90.11 ± 0.31
✓ ResNet12 69.05 ± 0.43 84.87 ± 0.29 77.45 ± 0.45 88.64 ± 0.33 80.30 ± 0.42 92.38 ± 0.20
Table 3
Test accuracy (%) of our method with and without BANs under 5-way 1-shot and 5-shot tasks on benchmark datasets.

BANs Backbone miniImageNet CIFAR-FS CUB

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

× ResNet12 69.05 ± 0.43 84.87 ± 0.29 77.45 ± 0.45 88.64 ± 0.33 80.30 ± 0.42 92.38 ± 0.20
✓ ResNet12 70.40 ± 0.44 85.31 ± 0.27 77.98 ± 0.45 89.78 ± 0.31 83.17 ± 0.40 93.75 ± 0.19
3.3. Few-shot evaluation

After pre-training, the student network in the last generation is
deployed to implement few-shot evaluation, in which the projector and
linear classifier are removed and the backbone network is frozen to play
as a feature extractor. In each FSC task, 𝐵𝑡+1

𝜃 is used to extract features
or support and query samples in 𝐷𝑛. A plain classifier of logistic
egression 𝑔𝜙 (⋅) with parameter 𝜙 is trained with support features to
redict the label for each query image.

. Experiments

.1. Datasets

miniImageNet has 100 classes with 600 images per class. These
lasses are split into 64, 16, and 20 respectively for the base, validation,
nd novel sets [30]. tiredImageNet contains 608 classes with an
verage number of 1281 images per class. The images are split into
51, 97, and 160 classes respectively for the base, validation, and novel
ets [51]. CIFAR-FS contains 100 classes with 600 images per class. The
otal classes are divided into 64, 16, and 20 for the base, validation, and
ovel sets [28]. Caltech-UCSD Bird-200-2011 (CUB) contains 200 bird
pecies with a total number of 11,788 images. The images are divided
nto 100, 50, and 50 classes respectively for the base, validation, and
ovel sets [52].

.2. Implementation details

For a fair comparison with previous methods, ResNet12 is adopted
s the backbone network in our method. It consists of 4 residual blocks
ith 640 filers in the last block, resulting in a 640-dimensional global

eature for each input image. The projector network is a multi-layer
erceptron with only a single linear layer of size 128. For all the
xperiments, the SGD with a momentum of 0.9 and a weight decay of
e−4 is chosen as the optimizer. The training epoch number is 130 and
he batch size in each epoch is 32. For miniImageNet, tiredImageNet
nd CIFAR-FS, the initial learning rate is set to 0.025 and decreased
y 0.2 at the 70th and 100th epochs. For CUB, the initial learning rate
s set to 0.1 and decayed by 0.2 for every 15 epochs after the 75th
poch. The temperature parameter in the SC loss and the KL loss is set
o 0.1 and 4, respectively. During the evaluation phase, we perform
-way 1-shot and 5-shot FSC tasks on all the datasets. In each case,
6

we implement a meta-test with 2000 episodes, in which each episode
randomly samples 15 query images from each novel class. The results
are finally reported as mean classification accuracy over all the episodes
and its corresponding 95% confidence intervals.

4.3. Ablation studies

We conduct ablation studies to investigate the effect of individual
components in two aspects. Firstly, the training of the teacher network
in the original generation involves the joint learning of CE and SC
losses. Thus, we analyze the effectiveness of their linear combination
versus being used alone respectively. This experiment results in three
methods denoted as Gen0_CE, Gen0_SC, and Gen0_CE+SC. Secondly,
knowledge transfer from the original generation Gen0_CE+SC to the
first generation Gen1 is another important component. The test ac-
curacy of each component of our method under 5-way 1-shot and
5-shot tasks on popular benchmark datasets is shown in Table 1. From
the results, we can see that: (1) On all the datasets, Gen0_CE and
Gen0_SC exhibit different performances in both 1-shot and 5-shot tasks.
For example, Gen0_CE exceeds Gen0_SC by a large margin, up to at
least 6% in both 1-shot and 5-shot settings on the CUB dataset. This
result illustrates that CE and SC losses have different properties in
dealing with the supervised learning task, which implies that their joint
learning may be beneficial. (2) Gen0_CE+SC outperforms both Gen0_CE
and Gen0_SC in all the cases, which tells that the combination of CE
and SC losses is more effective than them being used alone under SLA.
This observation validates that joint learning with CE and SC losses
can further minimize the empirical error. (3) The performance of Gen1
exceeds Gen0_CE+SC under 1-shot and 5-shot tasks on all the datasets,
which demonstrates that the strategy of BANs is still very effective
under SLA.

Otherwise, the proposed method mainly consists of two compo-
nents, i.e. SLA and BANs. Therefore, we investigate the important of
each component. On the one hand, we report the test accuracy of our
method with and without SLA under 5-way 1-shot and 5-shot tasks in
Table 2. As shown with the results, we find the SLA can significantly
increase the performance of our method, illustrating the technique of
SLA is a very effective technique to improve the generalization of the
backbone network. On the other hand, we report the test accuracy
of our method with and without BANs under 5-way 1-shot and 5-
shot tasks in Table 3. As shown with the results, we can see that the
performance with BANs outperforms the one without BANs, stating

BANs can significant contribution in our method.
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Fig. 3. Test accuracy (%) of different parameter values under 5-way 1-shot and 5-shot on FSC datasets.
Fig. 4. Test accuracy (%) of different transformations under 5-way 1-shot and 5-shot on miniImageNet, CIFAR-FS & CUB.
4.4. Hyper-parameter analysis

As shown in Eq. (12), the overall loss is mainly composed of three
terms, i.e., CE, SC and KL loss. Among them, CE and SC share the same
aim of minimizing the empirical error, which have the identical weight
of 1. Consequently, there only one hyper-parameter of 𝛽 left to be
tuned. We vary the value of 𝛽 between [0, 1.5] and show the accuracy
curves under different values in Fig. 3. From the results, we can see
that the highest performance is respectively reported at 𝛽 = 0.7, 1 and
0.3 on miniImageNet, CIFAR-FS and CUB. It is worth noting that the
discrepancy between the maximum and minimum is marginal, which
indicates that it is easy to tune the only hyper-parameter in our method.

4.5. The number of the transformations

SLA which is realized by rotating images under different scales, is
an important component in our method. We mainly investigate four ro-
tation angles and three scales to get the transformations number of 4, 8
and 12, respectively. The test accuracy under different transformations
on popular benchmark datasets is shown in Fig. 4. From the results, we
can observe that on miniImageNet and CUB, the highest performance is
obtained when 𝑀=8. Increasing more transformations does not bring
any further performance improvement. on CIFAR-FS, there is no big
performance difference among different transformations. Thus, we set
the transformation number to be 8 in our all experiments.
7

4.6. Time complexity analysis

Our method implements knowledge distillation across different gen-
erations. The total number of generations is assumed to be 𝑇 . In each
generation, the training is related to three factors, i.e. the number
of training epoch 𝐸, the batch size in each epoch 𝐿, the number of
transformations in SLA 𝑀 . Then our method has the time complexity
𝑂(𝑇𝐸𝐿𝑀). Given the number of 𝑀 and 𝐿, the time complexity mainly
depends on the number of generations. As shown in Fig. 5, we investi-
gate the FSC performance under different generations. From the results,
we can see there is a big performance leap from Gen0 to Gen1, and the
performance curves tend to be stable after Gen1. So our method can
achieve good performance when the generation number is only set to
1, not bringing much extra computation time.

4.7. Robust feature extraction and t-SNE visualization

In this subsection, we discuss the robustness of our method’s feature
extraction, which is crucial for handling the diversity of novel class
features. To illustrate this, we perform a t-SNE visualization of test
images, randomly sampling 5 classes and 200 images per class from the
novel dataset of miniImagenet. The visualization results of Gen0_CE,
Gen0_SC, Gen0_CE+SC, and Gen1 are shown in Fig. 6. The results reveal
that the 5 classes are better separated in the feature representation
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Fig. 5. Test accuracy (%) of different generations under 5-way 1-shot and 5-shot on miniImageNet, CIFAR-FS and CUB.

Fig. 6. t-SNE visualization of support features of novel classes extracted by the backbone network pre-trained with Gen0_CE, Gen0_SC, Gen0_CE+SC, Gen1 on miniImageNet.

Fig. 7. Image reconstruction of features extracted by each component of the proposed method.
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Table 4
Comparison of test accuracy (%) with related methods under 5-way 1-shot and 5-shot tasks on miniImageNet.

Method Backbone Empirical error Regularization Performance

CE SC MM NM SSL SD SLA 1-shot 5-shot

Baseline1 ResNet12 ✓ × × × × × × 59.65 ± 0.45 79.57 ± 0.31
Baseline2 ResNet12 × ✓ × × × × × 62.34 ± 0.45 75.76 ± 0.35
Neg-Cosine [19] WRN28 ✓ × × ✓ × × × 61.72 ± 0.81 81.79 ± 0.55
S2M2 [18] WRN28 ✓ × ✓ × ✓ × × 64.93 ± 0.18 83.18 ± 0.11
RFS [17] WRN28 ✓ × × × × ✓ × 64.82 ± 0.60 82.14 ± 0.43
SKD [48] ResNet12 ✓ × × × ✓ ✓ × 67.04 ± 0.85 83.54 ± 0.54
CSIV [9] ResNet12 ✓ × × × ✓ ✓ × 67.28 ± 0.80 84.78 ± 0.33
PAL [49] ResNet12 ✓ ✓ × × ✓ ✓ × 69.37 ± 0.64 84.40 ± 0.44
BANs_SLA ResNet12 ✓ ✓ × × × ✓ ✓ 70.40 ± 0.44 85.31 ± 0.22

‘✓’ means this term is used in the method. ‘×’ means that this term is not used in the method.
Table 5
Comparison of results on miniImageNet, tiredImageNet and CIFAR-FS.

Method Backbone Venue miniImageNet tiredImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Meta-learning
Prototypicala [7] Conv4 NIPS’17 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74 – –
Relationala [8] Conv4 CVPR’18 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78 55.00 ± 1.00 69.30 ± 0.80
DeepEMD [34] ResNet12 CVPR’20 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58 – –
CC+rot [45] ResNet12 CVPR’20 62.93 ± 0.45 79.87 ± 0.33 70.53 ± 0.51 84.98 ± 0.36 76.09 ± 0.30 87.83 ± 0.21
BML [50] ResNet12 ICCV’21 67.04 ± 0.63 83.63 ± 0.29 68.99 ± 0.50 85.49 ± 0.34 73.45 ± 0.47 88.04 ± 0.33
RENet [31] ResNet12 ICCV’21 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35 74.51 ± 0.46 86.60 ± 0.32
MeTAL [29] ResNet12 CVPR’21 66.61 ± 0.28 81.43 ± 0.25 70.29 ± 0.40 86.17 ± 0.35 – –
DAN [35] ResNet12 CVPR’21 67.76 ± 0.46 82.71 ± 0.31 71.89 ± 0.52 85.96 ± 0.35 – –
IEPT [44] ResNet12 ICLR’21 67.05 ± 0.44 82.90 ± 0.30 72.24 ± 0.50 86.73 ± 0.34 – –
APP2S [53] ResNet12 AAAI’22 66.25 ± 0.20 83.42 ± 0.15 72.00 ± 0.22 86.23 ± 0.15 73.12 ± 0.22 85.69 ± 0.16
DeepBDC [39] ResNet12 CVPR’22 67.34 ± 0.43 84.46 ± 0.28 72.34 ± 0.49 87.31 ± 0.32 – –
MFS [32] ResNet12 CVPR’22 68.32 ± 0.62 82.71 ± 0.46 73.63 ± 0.88 87.59 ± 0.57 – –
HGNN [36] ResNet12 AAAI’22 67.02 ± 0.20 83.00 ± 0.13 72.05 ± 0.23 86.49 ± 0.15 – –
Transfer learning
Baseline++ [16] ResNet12 ICLR’19 48.24 ± 0.75 66.43 ± 0.63 – – –
Neg-Cosine [19] WRN28 ECCV’20 61.72 ± 0.81 81.79 ± 0.55 – – –
RFS [17] WRN28 ECCV’20 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49 – –
CBM [54] ResNet12 MM’20 64.77 ± 0.46 80.50 ± 0.33 71.27 ± 0.50 85.81 ± 0.34 – –
SKD [48] ResNet12 Arxiv’21 67.04 ± 0.85 83.54 ± 0.54 72.03 ± 0.91 86.50 ± 0.58 76.90 ± 0.9 88.9 ± 0.60
CSIV [9] ResNet12 CVPR’21 67.28 ± 0.80 84.78 ± 0.33 72.21 ± 0.90 87.08 ± 0.58 77.87 ± 0.85 89.74 ± 0.57
PAL [49] ResNet12 ICCV’21 69.37 ± 0.64 84.40 ± 0.44 72.25 ± 0.72 86.95 ± 0.47 77.10 ± 0.70 88.0 ± 0.50
CCF [38] ResNet12 CVPR’22 68.88 ± 0.43 84.59 ± 0.30 – – – –
GLFA [55] ResNet12 PR’23 67.25 ± 0.36 82.80 ± 0.30 72.25 ± 0.40 86.37 ± 0.27 – –
BANs_SLA ResNet12 – 70.40 ± 0.44 85.31 ± 0.22 73.85 ± 0.49 87.72 ± 0.33 77.98 ± 0.45 89.78 ± 0.31

‘–’ Means the results are not provided by the authors. The best results are in bold font.
aMeans the results are reported in [34].
pace learned by Gen1 than those learned by Gen0_CE, Gen0_SC, and
en0_CE+SC. The samples in the same class gather tighter with clear
oundaries away from different classes, indicating that our method can
btain discriminative and robust feature representations.

This robustness is key for handling the diversity of novel class
eatures, ensuring that the model can generalize well to unseen data.
his analysis validates our theoretical discussion, demonstrating that
ur method effectively minimizes the generalization error on the base
et, enhancing its generalization ability on unseen data.

.8. Image reconstruction of features

Our method follows transfer learning, which emphasizes learn-
ng good feature representation during the pre-training. In order to
ntuitively show the effectiveness of our method, we display what
eatures have been retained by the pre-trained backbone network of
ach component in our method. We use deep image prior [42] to invert
he features extracted by the pre-trained backbone network into RGB
mages. The reconstruction results are shown in Fig. 7. We notice that
E loss allows for the holistic information of objects, while SC loss
ighlights the details and contours of objects. Combining them together
an keep their advantages, and then reconstructed images appear good
lobal state with details. Finally, our method can well reconstruct the
riginal image due to the instruction of a pre-trained teacher.
9

4.9. Comparison with most related methods

Our method is most related to the methods leveraging various loss
functions in the context of transfer learning, including Neg-Cosine [19],
RFS [17], S2M2 [18], SKD [48], PAL [49]. The comparison of results
between our method and these methods on the most popular dataset of
miniImageNet are shown in Table 4. These loss functions are broadly
categorized into two groups: empirical error-based and regularization-
based. The typical ones of the former are CE and SC losses. The latter
appeared in the area of FSC can be summarized as Negative Margin
(NM), Manifold Mixup (MM), Self-Supervised Learning (SSL), Self-
Distillation (SD) and Self-Supervised Label Augmentation (SLA). Please
note that we re-implement Baseline1 and Baseline2 with our own code,
which respectively only uses CE and SC on the original base dataset.
From the results, it is observed that: (1) Compared with Baseline1, all
the regularization techniques can improve the FSC performance. This
illustrates that current methods have already followed our proposed
theorem, which summarizes them and forms a complete edition to well
explain the process of pre-training. (2) Of all the comparison results,
PAL and CSIV have outstanding performance. However, they require
many loss terms in the final optimization function. Our method is about
1.03% and 0.53% higher than them respectively in 1-shot and 5-shot
classification, but only has one tuned parameter due to an implicit
regularization framework of SLA. Our method is simple yet effective
and the results further validated our proposed theorem experimentally.
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Table 6
Comparison of results on CUB dataset.

Method CUB

1-shot 5-shot

Meta-learning
DeepEMD [34] 75.65 ± 0.83 88.69 ± 0.50
BML [50] 76.21 ± 0.63 90.45 ± 0.36
RENet [31] 79.49 ± 0.44 91.11 ± 0.24
IEPT [44] 69.97 ± 0.49 84.33 ± 0.33
APP2S [53] 77.64 ± 0.19 90.43 ± 0.18
MFS [32] 79.60 ± 0.80 90.48 ± 0.44
HGNN [36] 78.58 ± 0.20 90.02 ± 0.12
Transfer learning
Baseline++ [16] 60.53 ± 0.83 79.34 ± 0.61
Neg-Cosine [19] 72.66 ± 0.85 89.40 ± 0.43
S2M2 [18] 80.68 ± 0.81 90.85 ± 0.44
CCF [38] 81.85 ± 0.42 91.58 ± 0.32
GLFA [55] 76.52 ± 0.37 90.27 ± 0.38
BANs_SLA 83.17 ± 0.39 93.75 ± 0.19

The best results are in bold font.

4.10. Comparison with the state-of-the-art methods

We compare the performance of BANs_SLA with several State-of-the-
Art (SOTA) methods on four popular datasets. According to the learning
paradigm, these methods are broadly classified into two categories:
meta-learning based and transfer learning based. From the comparison
results shown in Tables 5 and 6, we can see that: (1) Compared with
meta-learning methods, our method has achieved better performance.
Specifically, on miniImageNet, MFS and DeepBDC behave the best in
1-shot and 5-shot settings, respectively. our method beats them 2.08%
and 0.85%, respectively. On tiredImageNet, our method outperforms
the best MFS by 0.22% and 0.13% respectively in 1-shot and 5-shot
settings. On CIFAR-FS, our method achieves 3.38% and 1.74% improve-
ments than RENet and BML for 1-shot and 5-shot respectively. On CUB,
our method exceeds the best MFS by 3.57% and 3.27% respectively
in 1-shot and 5-shot settings. (2) Compared with transfer learning
methods, our method also has shown better performance. Specifically,
on miniImageNet, PAL and CSIV behave the best respectively in 1-
shot and 5-shot settings, our method beats them by 1.03% and 0.53%.
On tiredImageNet, our method outperforms the best PAL and CSIV
by 1.60% and 0.64% respectively in 1-shot and 5-shot settings. On
CIFAR-FS, our method achieves 0.11% and 0.04% improvement over
CSIV for 1-shot and 5-shot respectively. On CUB, our method exceeds
the best CCF by 1.32% and 2.17% respectively in 1-shot and 5-shot
settings. In a word, our method consistently outperforms current state-
of-the-art FSC methods under both 1-shot and 5-shot tasks on multiple
datasets. The promising performance is mainly attributed to minimizing
the empirical error and adopting effective regularization strategies
simultaneously.

5. Conclusions

This paper proposes the generalization error bound theorem as
the general rule to guide the FSC learning process in the context of
transfer learning. From this theorem, we learn that the pre-training
stage shall aim at minimizing the base-class generalization error. Fol-
lowing this idea, we design a method called Born-Again Networks
under Self-supervised Label Augmentation (BANs-SLA) to decrease the
base-class generalization error by investigating the empirical error and
regularization techniques jointly. Extensive results have validated the
effectiveness of each component in BANs-SLA, which have supported
our theorem. Moreover, just as stated in Theorem 1, the classification
error bound on novel classes is mainly determined three terms of
(1)base-class generalization error, (2) the base-novel domain diver-
gence and (3) the novel-class generalization error produced by an
incremental learner using novel samples. Our method mainly focuses
10
on the first term, limiting in addressing the other two terms. Especially,
the second term of domain divergence has significant impact on the FSC
performance. In our future work, we plan to explore techniques such as
adversarial domain adaptation to mitigate the domain divergence issue.
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Appendix. Supplementary material

A.1. Proof of Theorem 1

Proof.
𝑒𝑛(ℎ𝑜) ≈ 𝑒𝑛(ℎ) + 𝑒𝑛(ℎ▵)

= 𝑒𝑛(ℎ) + 𝑒𝑏(ℎ) − 𝑒𝑏(ℎ) + 𝑒𝐷𝑏
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛) + 𝑒𝑛(ℎ▵)

= 𝑒𝑏(ℎ) + 𝑒𝐷𝑏
(ℎ, 𝑓𝑛) − 𝑒𝑏(ℎ) + 𝑒𝑛(ℎ) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛) + 𝑒𝑛(ℎ▵).

(13)

ubstitute Eq. (2) into the right side of Eq. (13), then:

𝑛(ℎ𝑜) = 𝑒𝑏(ℎ) + 𝑒𝐷𝑏
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑏) + 𝑒𝐷𝑛
(ℎ, 𝑓𝑛)−

𝐷𝑏
(ℎ, 𝑓𝑛) + 𝑒𝑛(ℎ▵)

≤ 𝑒𝑏(ℎ) +
|

|

|

𝑒𝐷𝑏
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑏)
|

|

|

+
|

|

|

𝑒𝐷𝑛
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛)
|

|

|

+ 𝑒𝑛(ℎ▵)

≤ 𝑒𝑏(ℎ) +
|

|

|

𝐸𝑋∈𝐷𝑏
[|
|

ℎ(𝑥) − 𝑓𝑛(𝑥)||] − 𝐸𝑋∈𝐷𝑏
[|
|

ℎ(𝑥) − 𝑓𝑏(𝑥)||]
|

|

|

+ |

|

|

𝑒𝐷𝑛
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛)
|

|

|

+ 𝑒𝑛(ℎ▵).

(14)

s the expected absolute value is less than or equal to the expectation
f the absolute value, the In Eq. (14) becomes:

𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝐸𝑋∈𝐷𝑏
[|
|

ℎ(𝑥) − 𝑓𝑛(𝑥)|| − |

|

ℎ(𝑥) − 𝑓𝑏(𝑥)||]+
|

|

|

𝑒𝐷𝑛
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛)
|

|

|

+ 𝑒𝑛(ℎ▵).
(15)

or ℎ(𝑥) ∈ [0, 1] and 𝑓 (𝑥) ∈ [0, 1], then:

𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝐸𝑋∈𝐷𝑏
|

|

𝑓𝑛(𝑥) − 𝑓𝑏(𝑥)||
+ |

|

|

𝑒𝐷𝑛
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛)
|

|

|

+ 𝑒𝑛(ℎ▵).
(16)

et 𝐸𝑋∈𝐷𝑏
|

|

𝑓𝑛(𝑥) − 𝑓𝑏(𝑥)|| be 𝜆, the In Eq. (16) becomes:

𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝜆 + |

|

|

𝑒𝐷𝑛
(ℎ, 𝑓𝑛) − 𝑒𝐷𝑏

(ℎ, 𝑓𝑛)
|

|

|

+ 𝑒𝑛(ℎ▵).
(17)

et the samples in the base domain and the novel domain construct the
hole sample space of , the probability distribution of two domains
re respectively denoted as 𝜙𝑏(𝑥) and 𝜙𝑛(𝑥), then the In Eq. (17)
ecomes:

𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝜆 +
|

|

|

|

∫
|

|

ℎ(𝑥) − 𝑓𝑛(𝑥)|| (𝜙𝑏(𝑥) − 𝜙𝑛(𝑥))𝑑𝑥
|

|

|

|

+ 𝑒𝑛(ℎ▵).
(18)

is subdivided into two spaces 1 and 2, then:

𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝜆 +
|

|

|

|

|

∫1

|

|

ℎ(𝑥) − 𝑓𝑛(𝑥)|| (𝜙𝑏(𝑥) − 𝜙𝑛(𝑥))𝑑𝑥
|

|

|

|

|

+
|

|

|

|

|

ℎ(𝑥) − 𝑓𝑛(𝑥)|| (𝜙𝑏(𝑥) − 𝜙𝑛(𝑥))𝑑𝑥
|

|

| + 𝑒𝑛(ℎ▵).
(19)
|

|

∫2
|

|
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ℎ(𝑥) − 𝑓𝑛(𝑥)|| ≤ 1, then:

𝑒𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝜆 +
|

|

|

|

|

∫1

(𝜙𝑏(𝑥) − 𝜙𝑛(𝑥))𝑑𝑥
|

|

|

|

|

+

|

|

|

|

|

∫2

(𝜙𝑏(𝑥) − 𝜙𝑛(𝑥))𝑑𝑥
|

|

|

|

|

+ 𝑒𝑛(ℎ▵)

≤ 𝑒𝑏(ℎ) + 𝜆 + |

|

|

𝑃𝑟(1)𝐷𝑏
− 𝑃𝑟(1)𝐷𝑛

|

|

|

+
|

|

|

𝑃𝑟(2)𝐷𝑏
− 𝑃𝑟(2)𝐷𝑛

|

|

|

+ 𝑒𝑛(ℎ▵)

≤ 𝑒𝑏(ℎ) + 𝜆 + 2 sup
𝐵∈

|

|

|

𝑃𝑟𝐷𝑏
(𝐵) − 𝑃𝑟𝐷𝑛

(𝐵)||
|

+ 𝑒𝑛(ℎ▵).

(20)

Substitute Eq. (3) into the right side of In Eq. (20), we get:

𝑒𝑛(ℎ𝑜) ≤ 𝑒𝑏(ℎ) + 𝜆 + (𝐷𝑏, 𝐷𝑛) + 𝑒𝑛(ℎ▵). (21)

Furthermore, according to the statistical learning theory [21], for every
ℎ ∈ 𝐻 , the relationship between the empirical risk 𝑒𝑏(ℎ) and the
expected risk 𝑒𝑏(ℎ)on 𝐷𝑏 with probability at least 1-𝜂 has:

𝑒𝑏(ℎ) ≤ 𝑒𝑏(ℎ) +

√

𝑣(𝑙𝑛 2𝐿
𝑣 + 1) − 𝑙𝑛 𝜂

4
𝐿

. (22)

With the same theory, we get the relationship between the empirical
risk 𝑒𝑛(ℎ▵) and the expected risk 𝑒𝑛(ℎ▵) on 𝐷𝑛:

𝑛(ℎ▵) ≤ 𝑒𝑛(ℎ▵) +

√

𝑣(𝑙𝑛 2𝐾
𝑣 + 1) − 𝑙𝑛 𝜂

4
𝐾

. (23)

ubstitute the In Eq. (22) and (23) into the right side of In Eq. (21),
e finally get the few-shot generalization error bound theorem.
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